SUPPORTING DESIGN REPORT FOR WETLAND DEVELOPMENT TO IMPROVE THE WATER QUALITY OF HAMILTON LAKE

September 1999

Prepared for:

The Hamilton Lake Association P.O. Box 515 Hamilton, Indiana 46742

Prepared by:

HARZA ENGINEERING COMPANY

Property of Lake and River Enhancement Section Division of Fish and Wildlife/IDNR 402 W. Washington Street, W-273 Indianapolis, IN 46204

HAMILTON LAKE ENHANCEMENT PROJECT SUPPORTING DESIGN REPORT

TABLE OF CONTENTS

INTRODUCTION	1
LOCATION	1
DEVELOPMENT OF THE PROJECT DESIGN	
DESCRIPTION OF THE PROJECT Operation during low and normal flows Operation during moderate runoff events Operation during major runoff events	3
HYDROLOGY AND HYDRAULICS	5
ENVIRONMENTAL ISSUES	5
MAPPING AND SURVEYING	6
GEOTECHNICAL INVESTIGATIONS Field work Laboratory testing Summary of field and laboratory results Conclusions	7 8
PERMITTING STATUS	9
INSPECTION PLAN Removal and off-site disposal of soft sediments Placement of sheetpile Restoration of shoreline to preconstruction condition	9
OPERATION & MAINTENANCE/MONITORING PLAN	10
PROJECT DESIGN	11

FIGURES

Figure 1 Site Location Map
Figure 2 Project Location Map
Figure 3 Wetland Hydroperiod Map

APPENDICES

Appendix A Hydrologic Modeling Summary

Appendix B IDNR Letter Appendix C Surveying Data

Appendix D Subsurface Exploration and Laboratory Testing

Appendix E Permits

Appendix F Inspection and Maintenance Report Forms

Appendix G Design Details

SUPPORTING DESIGN REPORT FOR WETLAND DEVELOPMENT TO IMPROVE THE WATER QUALITY OF HAMILTON LAKE

INTRODUCTION

This Supporting Design Report summarizes the procedures, criteria, and results of analyses used for the design of a wetland developed to enhance the water quality of Hamilton Lake. The structure is designed to trap sediment and sediment-borne nutrients that now flow from Haughey Ditch into Hamilton Lake.

Hamilton Lake is a public recreation and scenic resource. The Haughey Ditch site is shown on Figure 1. Principal activities are boating, fishing and lakeshore recreation. The lake enhancement described in this report is being performed by the Hamilton Lake Association with partial funding from the Indiana Department of Natural Resource's T-by-2000 Program and additional support from the Natural Resources Conservation Service. Site easements have been obtained through funding by the Federal Wetland Reserve Program.

LOCATION

Hamilton Lake is a natural lake located in Otsego Township in the southern part of Steuben County, Indiana. The wetland development lies northeast of Hamilton Lake in Section 24, Township 36 N Range 14 E (Figure 2). The existing land use at the site is agricultural rowcrops. Shrubs line the streambanks in places, but this vegetation is limited to the streambanks themselves as the overbank areas are regularly tilled. Farm land surrounds the site. Normal pond area will be 7.5 acres, and the short-term detention pond will be approximately 12 acres.

DEVELOPMENT OF THE PROJECT DESIGN

Background

A 1990 feasibility study of measures to remedy water quality impairments to Hamilton Lake recommended construction of eight artificial wetlands to capture nutrient-laden sediment and reduce the influx of nutrients, particularly phosphorus, into the lake. Of the eight locations recommended in the feasibility study, two sites were eliminated during the initial phases of engineering studies. Preliminary engineering studies were conducted for the remaining six sites.

Of these, the Indiana Department of Natural Resources Division of Fish and Game questioned whether the impacts on the wildlife community would justify creation of a wetland at four of the sites. At this time, an agreement has been reached with the landowner at one of the sites (Haughey Ditch site) to proceed with development. The purpose for locating the structure at this point was to develop a wetland fed by Haughey Ditch to capture sediment and nutrients (particularly sediment-bound phosphorus) now flowing into Hamilton Lake and contributing to water quality impairments.

DESCRIPTION OF THE PROJECT

The Project consists of a low head weir that would protect Hamilton Lake water quality by retaining sediment and sediment-bound nutrients transported by small and moderate-sized storms. Nutrients retained by the structure will be available for uptake by wetland vegetation. Storms producing significant amounts of runoff would pass over the weir while generating a negligible backwater effect.

The weir crest will project 5 feet above the existing ground elevation and will extend approximately 40 feet between two small hills which form the abutments. Removal of vegetation along the footprint of the structure will be required for construction. Otherwise, disturbance of the wetland and channel during construction will be minimal.

The terrain on either side of the weir is sufficiently broad and stable to allow a backhoe to be driven up to the weir so that the structure can be maintained and accumulated sediment removed from behind the weir and the abutments.

Operation during low and normal flows

The proposed weir is designed with a notch located along the axis of Haughey Ditch. During periods of low flow, the notched-weir creates a permenant wetland behind the structure. During runoff events, a temporary detention pool is formed behind the wetland up to the elevation where water spills over the length of the weir crest. This temporary pool is designed to drain from its maximum elevation to the level of the permanent pool to allow a period of time for sediment and sediment-bound nutrients to settle in the wetland.

By allowing wetland water levels to fluctuate below the permanent pool level and the maximum flood pool, the notch aids in maintaining the hydrologic balance of the wetland. Because low flows typically carry little sediment or sediment-bound nutrients or chemicals, passage of low flows over the notch at the permanent pool level does not compromise the function of the weir as a water quality enhancement.

Operation during moderate runoff events

The primary purpose of the proposed weir is to provide a period of extended detention during moderate runoff events and during the first flush of larger events. By reducing the volume of water flowing in Haughey Ditch below the structure during these periods, runoff will be briefly retained in the wetland producing sedimentation of soil particles. Nutrients adsorbed by these particles will then be consumed by wetland vegetation rather than passing on to Hamilton Lake.

Operation during major runoff events

During high flows the weir is designed to be completely submerged and to offer little obstruction to flood flows. Because of its low height the weir will have little effect on upstream water levels and on inundation caused by flood flows. Flow of bed load sediment during floods will be impeded by the submerged weir.

Figure 3 illustrates the influence on the project on wetland hydroperiods. The wetland structure will create an area that is saturated (F) and permanently flooded (E). The structure will retard storm runoff increasing the duration of intermittent flooding (D). Drainage over the weir crest and through the notch will permit sufficiently rapid drainage to cause little expansion of the area that is semipermanently flooded (C), no expansion of the area that is seasonally flooded (B), and minor expansion of the area that is temporarily flooded (A).

- Temporarily Flooded. Surface water is present for brief periods during the growing season, but the water table usually lies well below the soil surface.
- Seasonally Flooded. Surface water is present for extended periods especially early in the growing season, but is absent by the end of the season in most years. When surface water is absent, the water table is often near the land surface.
- Semipermanently Flooded. Surface water persists throughout the growing season in most years. When surface water is absent, the water table is usually at or very near the land surface.
- Intermittently Exposed. Surface water is present throughout the year except in years of extreme drought.
- Saturated. The substrate is saturated to the surface for extended periods during the growing season, but surface water is seldom present.

HYDROLOGY AND HYDRAULICS

Flows at the site of the weir have been based on information taken from hydrological modeling carried out as part of the design study. This study is presented as Appendix A of this report. The Haughey Ditch site has a watershed area of 1.5 sq. miles and an estimated 100-year-storm flood peak of 500 cfs. Flood peaks were computed based on Indiana Department of Natural Resources guidelines using the unit hydrograph method from 100-yr, 24-hr rainfall with SCS type II rainfall distribution, infiltration losses determined from soil types and vegetation and baseflow.

ENVIRONMENTAL ISSUES

The primary environmental consequence of the project will be to reduce sediment and associated agricultural chemical transport to Hamilton Lake.

As noted in the IDNR's letter of March 10, 1992 contained in Appendix B, the Natural Heritage Program's data have been checked and, to date, no vulnerable plant or animal species of either state of federal significance have been reported to occur in the project vicinity. The letter continues by noting that Division of Fish and Wildlife staff inspected the project area on February 5, 1992 and supports Site A (Haughey Ditch site).

MAPPING AND SURVEYING

Mapping and surveying of the Hamilton Lake wetland was conducted at the Haughey Ditch project site by Williams Aerial & Mapping, Inc. during April 1990. Mapping of the vicinity of the sediment control structure is shown in Appendix C.

GEOTECHNICAL INVESTIGATIONS

To define the foundation characteristics of the proposed low weir structure, to characterize the accumulated sediment, and to establish design criteria, Harza conducted a subsurface exploration and laboratory testing program (Appendix D). The subsurface exploration program included two borings and excavation of two test pits. The laboratory testing program included the following tests: Atterberg Limits, gradation analysis, visual classification and Standard Proctor for selected samples. A pocket penetrometer and a hand torvane shear strength test kit were used in the field to evaluate the shear strength of the soil layers.

Subsurface soil exploration and laboratory testing of soil samples were conducted in accordance with standard practices. The results of the soil exploration and testing were used to determine criteria for construction of the wetland control structure.

At the site of the proposed structure, soil borings were located on either side of the proposed structure, and two test pits were excavated within the proposed wetland. The upper 8-10 feet of soil is stiff silty clay with some sand (CL) or stiff clayey silt (ML). Below the silty clay lies gray clay (CL). The gray clay includes a two foot thick soft layer surrounding a thin (2-4 inches thick) coarse sand layer located approximately at the depth of the water table. Below the soft layer, the gray clay becomes medium to hard.

Gravelly clay was encountered at a depth of about 18 feet near the proposed right abutment location, and gravelly clayey sand was found at a depth of 4.5 feet in one of the test pits. The gravelly layers do not appear to be continuous and contain at least 40% fines. Seepage under or along gravel layers is unlikely; therefore, the sheetpile structure should provide adequate seepage cut-off.

The natural moisture content of the upper 5 feet of soil is below the plastic limit. Therefore, preliminary indications are that excavation of this material will not be a problem during construction.

It should be noted that at the time the geotechnical field work was conducted, a small embankment dam was envisioned for this site. Since this time, the design has been changed to the sheetpile structure described in this report.

The following sections present, summarize, and interpret subsurface and laboratory information that has been gathered as a result of drilling and testing of selected soil samples. Sampling and testing data are presented in Appendix D.

Field work

Field work was conducted on July 30-31 and August 6-7, 1991. The subsurface exploration program is summarized below.

The borehole locations are shown on Exhibit 2 of Appendix D. Boreholes AB1 and AB2 were located 100 to 200 feet to the east of the proposed low head weir structure. AB1 was located on the south bank approximately 30 feet from the stream channel. AB2 was located on the north bank approximately 50 feet from the stream channel.

Test pits AT1 and AT2 were located to the west of the low head weir structure. Both were located on the south side of the stream in the floodplain.

Samples were obtained at approximately one-foot intervals and were visually classified in the field. Some samples were placed into jars and retained for testing in Harza's soil laboratory.

Laboratory testing

Laboratory testing was conducted to determine the gradation of the sample, the characteristics of fine grained materials and organic content. Testing was conducted according to ASTM standards as follows:

<u>Test</u>	ASTM Designation
Particle-Size Analysis of Soils	D-422
Atterburg Limits	D-4318
Moisture Content	D-2216
Organic Matter Content	D-2974

Summary of field and laboratory results

At the site of the proposed structure, soil borings were located on either side of the proposed structure, and two test pits were excavated within the proposed wetland. The upper 8-10 feet of soil is stiff silty clay with some sand (CL) or stiff clayey silt (ML). Below the silty clay lies gray clay (CL). The gray clay includes a two foot thick soft layer surrounding a thin (2-4 inches thick) coarse sand layer located approximately at the depth of the water table. Below the soft layer, the gray clay becomes medium to hard.

Gravelly clay was encountered at a depth of about 18 feet beneath the proposed right abutment, and gravelly clayey sand was found at a depth of 4.5 feet in one of the test pits. The gravelly layers do not appear to be continuous and contain at least 40% fines. Seepage under the embankment dam along gravel layers is unlikely and a seepage cut-off is not necessary.

The natural moisture content of the upper 5 feet of soil is below the plastic limit; therefore, preliminary indications are that excavation and compaction of this material will not be a problem during construction.

Conclusions

The exploration program which was conducted at the Hamilton Lake wetland site and the laboratory testing of soil samples provided information regarding soil profiles needed for design of the sediment control structure. In addition, the sampling provided information on the characteristics of the existing retained sediment.

The foundation conditions at the borehole are well defined. Dense soils were found within a few feet of the surface in all locations. The dense soil layer is sufficiently dense to provide resistance for driven piles.

PERMITTING STATUS

Permits necessary for construction of the sediment control structure have been approved. Copies of the following documents are contained in Appendix E:

- IDNR Certificate of Approval for Construction in a Floodway;
- Army Corps of Engineers Section 404 Permit; and
- Letter from the IDNR Division of Historic Preservation.

INSPECTION PLAN

Removal and off-site disposal of soft sediments

Measurement of the quantity of soft sediment removed from the site will be based on survey data. The inspector shall verify that the surveying procedure is accurate for computation of the quantity.

The inspector will verify that roadways are cleaned and maintained during construction as directed by the specifications.

Placement of sheetpile

Measurement of the quantity and type of sheetpile used will be verified by the inspector. The inspector will also verify by survey the level of the weir crest and the dimensions of the weir notch.

Restoration of shoreline to preconstruction condition

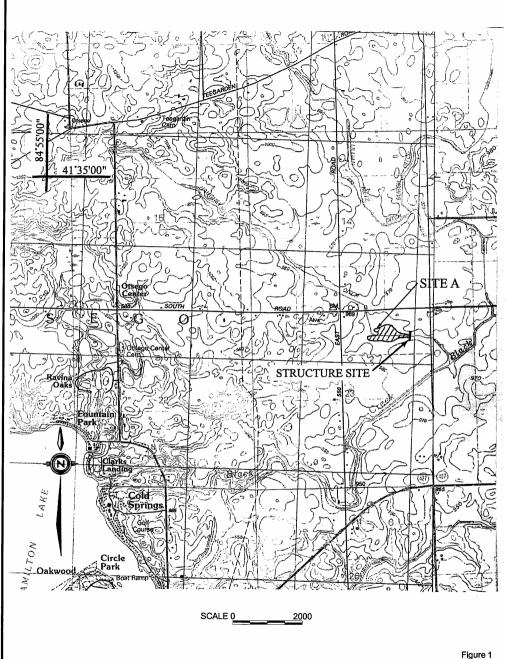
After completion of construction the inspector will verify that the shoreline and construction staging area have been restored to preconstruction condition. The inspector will be required to signify that the work is complete before the contractor will receive payment for this item.

OPERATION & MAINTENANCE/MONITORING PLAN

The weir spanning Haughey Ditch is designed to trap sediment immediately behind the low head weir. The time required to fill the sediment traps at the inlet to the wetland or to deposit sufficient sediment behind the weir to limit its effectiveness is unknown. Therefore, the determination of the long-term maintenance cycle will be based on information gathered during the first five years of site monitoring.

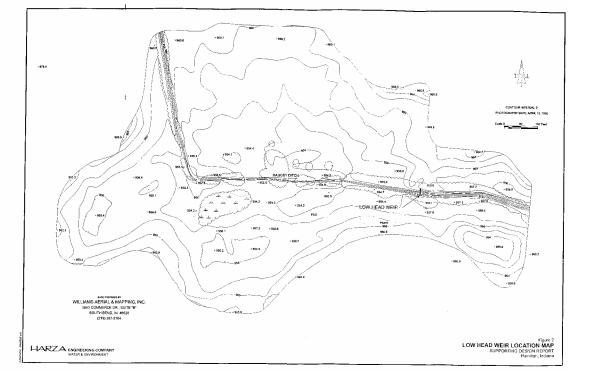
During the first two years, the deposition of silt in the sediment traps, the condition of the weir and its abutments, and changes in the extent or type of wetland vegetation should be inspected every six months. Sediment should be removed from behind the weir when it is more than 60 percent full. All recovered sediment should be placed in upland disposal areas outside of the delineated wetland.

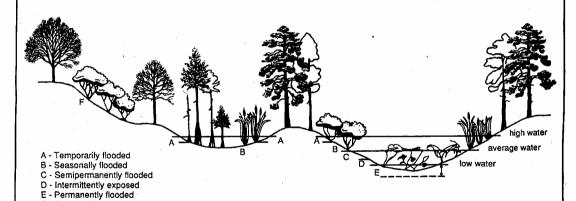
After two years, if maintenance requirements prove to be minimal, then the frequency of inspection can be reduced to once every year. If maintenance requirements continue to be minimal after four years, then the maintenance schedule can be further reduced to once every two years.


Inspection and maintenance report forms are included in Appendix F.

PROJECT DESIGN

Design details of the Hamilton Lake Sediment Control Structure are presented in Appendix G, includes drawings, and a cost estimate.


Project construction costs are estimated at \$79,000, including construction inspection, administration, and engineering.


FIGURES

ENGINEERING COMPANY
WATER & ENVIRONMENT

SITE LOCATION MAP
SUPPORTING DESIGN REPORT
Hamilton, Indiana

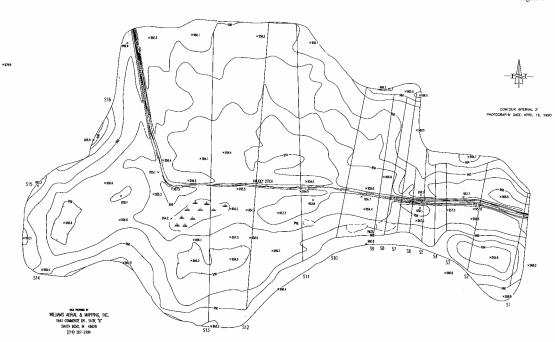
(Source: Cowardin et al., 1979)

F - Saturated

Figure 3
WETLAND HYDROPERIOD
SUPPORTING DESIGN REPORT
Hamilton, Indiana

APPENDICES

HYDROLOGIC MODELING SUMMARY


Hydrologic analysis of the present condition and a scenario with a low head weir (modified condition) were modeled using the United States Corps of Engineers HEC-RAS hydraulic modeling computer software.

The reach of Haughey Ditch, where the proposed low head weir is recommended to be designed, was segmented into 14 profiles (Figure 1). Stream geometry, roughness coefficients, and overbank locations were added to the geometric input of the model. The flow input of the model included the addition of the estimated 100 year, 24-hour peak flow of 550 cubic feet per second, and the estimated ditch channel slope. A present condition evaluation was performed on these variables. A summary of results of the present condition model are included in Table 1 followed by a more detailed analysis in Appendix A.

The present condition model was compared to the design scenario with a low hear weir (modified condition) located in Haughey Ditch around Station 520. A summary of the modified condition results are presented in Table 1 followed by a more detailed analysis in Appendix A.

Table 1. Water Surface Elevation for Existing and Proposed Condition 550 cfs (100-year, 24-hour discharge)

Cross Section Number	Cross Section Location (feet upstream)	Water Surface Elevation existing condition (feet NGVL)	Water Surface Elevation proposed condition (feet NGVL)	Change in Water Surface Elevation (feet): Proposed - Existing
1	0	954.56	954.56	0
2	200	956.34	956.34	0
3	350	956.52	956.52	0
4	400	956.75	956.75	0
5	450	956.85	956.85	0
6	500	957.1	957.1	0
7	550	957.48	958.14	0.66
8	600	957.83	958.37	0.54
9	650	957.84	958.38	0.54
10	800	957.86	958.39	0.53
12	1000	957.87	958.4	0.53
13	1200	957.87	958.4	0.53
14	1400	957.87	958.4	0.53

Summary Hydraulic Analysis: Present Condition

HEC-RAS Plan: 550 CFS River: haughey Reach: haughey

Reach	River Sta	- E.G. Elev	W.S. Elev	Vel Head	Fretn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
10		(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
haughey	1400	957.87	957.87	0.00	0.00	0.00	210.88	210.18	128.94	951.19
haughey	1200	957.87	957.87	0.00	0.00	0.00	17.32	495.66	37.02	1005.28
haughey	1000	957.87	957.87	0.00	0.01	0.00	32.80	475.09	42.11	804.41
haughey	800	957.86	957.86	0.01	0.02	0.00	64.74	461.23	. 24.04	422.08
haughey	650	957.85	957.84	0.01	0.01	0.00	17.21	516.04	16.74	300.19
haughey	600	957.84	957.83	0.01	0.02	0.03	14.86	517.68	17.46	271.48
haughey	550	957.79	957.48	0.31	0.20	0.02	15.56	524.25	10.20	43,59
haughey	500	957.58	957.10	0.48	0.25	0.00	4.63	541.67	3.70	30.92
haughey	450	957.32	956.85	0.47	0.21	0.05	1.56	546.92	1.52	29.00
haughey	400	957.06	956.75	0.31	0.17	0.00	1.10	526.67	22.23	71.05
haughey	350	956.88	956.52	0.36	0.20	0.01	19.76	507.76	22.48	72.83
haughey	200	956.68	956.34	0.34	1.16	0.06	2.58	544.50	2.92	68.15
haughey	0	955.46	954.56	0.90			8.30	531.28	10.42	49.70

HEC-RAS Plan: 550 CFS River: haughey Reach: haughey

Reach	River Sta	Q Total	Min Ch Et	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chni	Flow Area	Top Width	Froude # Chl
SCOMMO	10000	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	and the second second second	Committee of the second second	Frouds # CM
haughey	1400	550.00	954.00	957.87		957.87	0.000022	10 Company of the Com	(sq ft)	(ft)	
haughey	1200	550.00	953.50					0.32	1760.90	951.19	0.03
haughey	1000	550.00	953.00			957.87	0.000011	0.24	2429.98	1005.28	0.02
haughey	800					957.87	0.000012	0.27	2128.26	804.41	0.03
Principle of the Paris of the P	Charles Control Street Control Control	550.00	952.60	957.86		957.86	0.000100	0.69	853.77	422.08	0.07
haughey	650	550.00	952.20	957.84		957.85	0.000124	0.76	746.13		
haughey	600	550.00	952.05	957.83		957.84	0.000145			300.19	0.08
haughey	550	550.00	951.90	957.48		957.79		0.83	683.60	271.48	0.08
haughey	500	550.00	951.80	957.10			0.003078	4.52	127.50	43.59	0.39
haughey	450	550.00				957.58	0.005120	5.59	100.50	30.92	0.49
	STATE OF CHARGE STREET, STATE OF STATE OF STATE OF STREET, STATE OF		951.70	956.85		957.32	0.005050	5.52	100.66	29.00	0.49
haughey:	400	550.00	951.60	956.75	1	957.06	0.003513	4.58	130,26	71.05	
haughey	350	550.00	951.50	956.52		956.88	0.003473	5.01			0.41
haughey	200	550.00	951.30	956.34	-	956.68			125.17	72.83	0.43
haughey	0	550.00	950.70	954.56	054.50		0.004629	4.69	121.39	68.15	0.46
HA CORRESPONDE	ALCO ASSESSMENT CONTROL OF		500.70	954.56	954.56	955.46	0.015408	7.71	75.98	49.70	0.81

Summary Hydraulic Analysis: Modified Condition

HEC-RAS Plan: final plan River: haughey Reach: haughey

Reach	River Sta	E.G. Elev	W.S. Elev	Vel Head	Fretn Loss	C&E Loss	Q Left	Q Channel	Q Right	Top Width
	10000	(ft)	(ft) '	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
haughey	1400	958.40	958.40	0.00	0.00	0.00	224.34	187.95	137.71	1019.10
haughey	1200	958.40	958.40	0.00	0.00	0.00	24.54	469.67	55.80	1079.76
haughey	1000	958.40	958.40	0.00	0.00	0.00	50.71	450.95	48.34	841.97
haughey	800	958.39	958.39	0.00	0.01	0.00	93.00	423.55	33.45	458.83
haughey	650	958.38	958.38	0.01	0.00	0.00	21.17	503.78	25.05	352.35
haughey	600	958.38	958.37	0.01	0.01	0.02	21.42	502.83	25.75	292.45
haughey	550	958.35	958.14	0.21		-	23.90	509.09	17.02	240.71
haughey	520	Inline Weir						:		
haughey	500	957.58	957.10	0.48	0.25	0.00	4.63	541.67	3.70	30.92
haughey	450.	957.32	956.85	0.47	0.21	0.05	1.56	546.92	1.52	29.00
haughey	400	957.06	956.75	0.31	0.17	0.00	1,10	526.67	22.23	71.05
haughey	350	956.88	956.52	0.36	0.20	0.01	19.76	507.76	22.48	72.83
haughey	200	956.68	956.34	0.34	1.16	0.06	2.58	544.50	2.92	68.15
haughey	0	955.46	954.56	0.90			8.30	531.28	10.42	49.70

HEC-RAS Plan: final plan River: haughey Reach: haughey

Reach	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Cht
200	100	(cfs)	(ft)	(ft) s	(ft)	(ft)	(fVft)	(fl/s)	(sq ft)	(ft)	1 TOUGH & CIE
haughey.	1400	550.00	954.00	958.40	955.40	958.40	0.000010	0.24	2279.21	1019.10	0.00
haughey	1200	550.00	953.50	958.40		958.40	0.000006	0.20	2981.30		0.02
haughey	1000	550.00	953.00	958.40		958.40	0.000007	0.22		1079.76	0.02
haughey	800	550,00	952.60	958.39	i	958.39			2564.81	841.97	0.02
haughey	650	550.00	952.20				0.000049	0.54	1090.07	458.83	0.05
haughey	600			958.38		958.38	0.000067	0.63	920.14	352.35	0.06
	CAT A COMPANY OF THE PARTY OF	550.00	952.05	958.37		958.38	0.000079	0.68	837.02	292,45	0.06
haughey	550	550.00	951.90	958.14	955.53	958.35	0.001775	3.79	185.23	240.71	0.30
haughey	520	Inline Weir							100.20	240.71	0.30
haughey	500	550.00	951.80	957.10		957.58	0.005120	5.59	400.50		
haughey	450	550.00	951,70	956.85		957.32			100.50	30.92	0.49
haughey	400	550,00	951,60	956.75			0.005050	5.52	100.66	29.00	0.49
haughey	350	550.00				957.06	0.003513	4.58	130.26	71.05	0.41
	L Proce. Majorathy management 1995		951.50	956.52	i	956.88	0.003473	5.01	125.17	72.83	0.43
haughey	200	550.00	951.30	956.34		956.68	0.004629	4.69	121.39	68.15	0.46
haughey	10	550.00	950.70	954.56	954.56	955.46	0.015408	7.71	75.98	49 70	0.40

Profile Detailed Hydraulic Analysis: Present Condition

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 1400 Profile: PF 1

E.G. Elev (ft)	957.87	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.00	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	957.87	Reach Len. (ft)	200.00	200.00	200.00
Crit W.S. (ft)	955.40	Flow Area (sq ft)	686.48	665.83	408.59
E.G. Slope (ft/ft)	0.000022	Area (sq ft)	686.48	665.83	408.59
Q Total (cfs)	550.00	Flow (cfs)	210.88	210.18	128.94
Top Width (ft)	951.19	Top Width (ft)	457.72	231.82	261.65
Vel Total (ft/s)	0.31	Avg, Vel. (ft/s)	0.31	0.32	0.32
Max Chi Dpth (ft)	3.87	Hydr. Depth (ft)	1.50	2.87	1.56
Conv. Total (cfs)	116187.9	Conv. (cfs)	44549.6	44399.9	27238.3
Length Wtd. (ft)	200.00	Wetted Per. (ft)	457.73	232.01	261.67
Min Ch El (ft)	954.00	Shear (lb/sq ft)	0.00	0.00	0.00
Alpha	1.00	Stream Power (lb/ft s)	0.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	3.70	25.07	3.21
C & E Loss (ft)	0.00	Cum SA (acres)	3.39	7.57	2.75

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 1200 Profile: PF 1

E.G. Elev (ft)	957.87	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.00	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	957.87	Reach Len. (ft)	200.00	200.00	200.00
Crit W.S. (ft)		Flow Area (sq ft)	112.35	2077.48	240.15
E.G. Slope (ft/ft)	0.000011	Area (sq ft)	112.35	2077.48	240.15
Q Total (cfs)	550.00	Flow (cfs)	17.32	495.66	37.02
Top Width (ft)	1005.28	Top Width (ft)	120.18	628.21	256.89
Vel Total (ft/s)	0.23	Avg. Vel. (ft/s)	0.15	0.24	0.15
Max Chi Dpth (ft)	4.37	Hydr. Depth (ft)	0.93	3.31	0.93
Conv. Total (cfs)	168949.7	Conv. (cfs)	5320.1	152257.6	11372.1
Length Wtd. (ft)	200.00	Wetted Per. (ft)	120.20	628.27	256.89
Min Ch El (ft)	953.50	Shear (lb/sq ft)	0.00	0.00	0.00
Alpha	1.05	Stream Power (lb/ft s)	0.00	0.00	0.00
Frotn Loss (ft)	0.00	Cum Volume (acre-ft)	1.86	18.78	1.72
C & E Loss (ft)	0.00	Cum SA (acres)	2.06	5.60	1.56

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 1000 Profile: PF 1

E.G. Elev (ft)	957.87	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.00	Wt.n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	957.87	Reach Len. (ft)	200.00	200.00	200.00
Crit W.S. (ft)		Flow Area (sq ft)	198.93	1755.26	174.07
E.G. Slope (ft/ft)	0.000012	Area (sq.ft)	198.93	1755.26	174.07
Q Total (cfs)	550.00	Flow (cfs)	32.80	475.09	42.11
Top Width (ft)	804.41	Top Width (ft)	213.09	486.47	104.86
Vel Total (ft/s)	0.26	Avg. Vel. (fl/s)	0.16	0.27	0.24
Max Chl Dpth (ft)	4.87	Hydr. Depth (ft)	0.93	3.61	1.66

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 1000 Profile: PF 1 (Continued)

Conv. Total (cfs)	157805.8	Conv. (cfs)	9411.5	136312.4	12082.0
Length Wtd: (ft)	200.00	Wetted Per. (ft)	213.09	486.66	104.93
Min Ch El (ft)	953.00	Shear (lb/sq:ft)	0.00	0.00	0.00
Alpha	1.04	Stream Power (lb/ft s)	0.00	0.00	0.00
Fretn Loss (ft)	0.01	Cum Volume (acre-ft)	1.15	9.98	0.77
C & E Loss (ft)	0.00	Cum SA (acres)	1.30	3.04	0.73

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 800 Profile: PF 1

E.G. Elev (ft)	957.86	Element	Left OB	Channel _	Right OB
Vel Head (ft)	0.01	Wt.n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	957.86	Reach Len. (ft)	150.00	150.00	150.00
Crit W.S. (ft)		Flow Area (sq ft)	137.19	665.62	50.95
E.G. Slope (ft/ft)	0.000100	Area (sq ft)	137.19	665.62	50.95
Q Total (cfs)	550.00	Flow (cfs)	64.74	461.23	24.04
Top Width (ft)	422.08	Top Width (ft)	147.88	219.28	54.92
Vel Total (ft/s)	0.64	Avg. Vel. (ft/s)	0.47	0.69	0.47
Max Chl Dpth (ft)	5.26	Hydr. Depth (ft)	0.93	3.04	0.93
Conv. Total (cfs)	54912.2	Conv. (cfs)	6463.5	46048.9	2399.7
Length Wtd. (ft)	150.00	Wetted Per. (ft)	147.89	219.49	54.95
Min Ch El (ft)	952.60	Shear (lb/sq ft)	0.01	0.02	0.01
Alpha	1.06	Stream Power (lb/ft s)	0.00	0.01	0.00
Frctn Loss (ft)	0.02	Cum Volume (acre-ft)	0.38	4.42	0.25
C & E Loss (ft)	0.00	Cum SA (acres)	0.47	1.42	0.36

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 650 Profile: PF 1

E.G. Elev (ft)	957.85	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	957.84	Reach Len: (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	33.11	680.80	32.21
E.G. Slope (ft/ft)	0.000124	Area (sq ft)	33.11	680.80	32.21
Q Total (cfs)	550.00	Flow (cfs)	17.21	516.04	16.74
Top Width (ft)	300.19	Top Width (ft)	36.06	229.06	35.07
Vel Total (ft/s)	0.74	Avg. Vel. (ft/s)	0.52	0.76	0.52
Max Chi Dpth (ft)	5.64	Hydr, Depth (ft)	0.92	2.97	0.92
Conv. Total (cfs)	49467.4	Conv. (cfs)	1548.3	46413.0	1506.1
Length Wtd. (ft)	50.00	Wetted Per. (ft)	36.10	229.49	35.12
Min Ch El (ft)	952.20	Shear (lb/sq ft)	0.01	0.02	0.01
Alpha	1.02	Stream Power (lb/ft s)	0.00	0.02	0.00
Frctn Loss (ft)	0.01	Cum Volume (acre-ft)	0.09	2.10	0.11
C & E Loss (ft)	0.00	Cum SA (acres)	0.15	0.65	0.21

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 350 Profile: PF 1

E.G. Elev (ft)	956.88	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.36	Wt: n-Val,	0.030	0.045	0.030
W.S. Elev (ft)	956.52	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	11.13	101.41	12.63
E.G. Slope (ft/ft)	0.003473	Area (sq ft)	11.13	101.41	12.63
Q Total (cfs)	550.00	Flow (cfs)	19.76	507.76	22.48
Top Width (ft)	72.83	Top Width (ft)	23.01	23.72	26.09
Vel Total (ft/s)	4.39	Avg. Vel. (ft/s)	1.77	5.01	1.78
Max Chi Dpth (ft)	5.02	Hydr. Depth (ft)	0.48	4.28	0.48
Conv. Total (cfs)	9332.2	Conv. (cfs)	335.2	8615.5	381.5
Length Wtd. (ft)	50.00	Wetted Per. (ft)	23.48	24.57	26.51
Min Ch El (ft)	951.50	Shear (lb/sq ft)	0.10	0.89	0.10
Alpha	1.21	Stream Power (lb/ft's)	0.18	4.48	0.18
Frctn Loss (ft)	0.20	Cum Volume (acre-ft)	0.02	0.44	0.02
C & E Loss (ft)	0.01	Cum SA (acres)	0.07	0.14	0.08

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 200 Profile: PF 1

. Haughey	reachinaughey Riv Sta. 2	.00 Profile: PF 1		
956.68	Element'	Left OB	Channel	Rìght OB
0.34	Wt.n-Val.	0.030	0.045	0.030
956.34	Reach Len. (ft)	150.00	150.00	150.00
-	Flow Area (sq ft)	2.51	116.05	2.83
0.004629	Area (sq ft)	2.51	116.05	2.83
550.00	Flow (cfs)	2.58	544.50	2.92
68.15	Top Width (ft)	14.84	36.52	16.79
4.53	Avg. Vel. (ft/s)	1.03	4.69	1.03
5.04	Hydr. Depth (ft)	0.17	3.18	0.17
8084.0	Conv. (cfs)	37.9	8003.2	42.9
150.00	Wetted Per. (ft)	14.85	38.45	16.79
951.30	Shear (lb/sq ft)	0.05	0.87	0.05
1.06	Stream Power (lb/ft s)	0.05	4.09	0.05
1.16	Cum Volume (acre-ft)	0.01		0.01
0.06	Cum SA (acres)	0.04	0.11	0.05
	956.68 0.34 956.34 0.004629 550.00 68.15 4.53 5.04 8084.0 150.00 951.30 1.06 1.16	956.68 Element 0.34 Wt.n-Val. 956.34 Reach Len. (ft) Flow Area (sq ft) 0.004629 Area (sq ft) 550.00 Flow (cfs) 68.15 Top Width (ft) 4.53 Avg. Vel. (ft/s) 5.04 Hydr. Depth (ft) 8084.0 Conv. (cfs) 150.00 Wetted Per. (ft) 951.30 Shear (lb/sq ft) 1.06 Stream Power (lb/ft s) 1.16 Cum Volume (acre-ft)	956.68 Element Left:OB 0.34 Wt. n-Val. 0.030 956.34 Reach Len. (ft) 150.00 Flow Area (sq ft) 2.51 0.004629 Area (sq ft) 2.51 550.00 Flow (cfs) 2.58 68.15 Top Width (ft) 14.84 4.53 Avg. Vel. (ft/s) 1.03 5.04 Hydr. Depth (ft) 0.17 8084.0 Conv. (cfs) 37.9 150.00 Wetted Per. (ft) 14.85 951.30 Shear (lb/sq ft) 0.05 1.06 Stream Power (lb/ft s) 0.01	956.68 Element Left.OB Channel 0.34 Wt.n-Val. 0.030 0.045 956.34 Reach Len. (ft) 150.00 150.00 Flow Area (sq ft) 2.51 116.05 0.004629 Area (sq ft) 2.51 116.05 550.00 Flow (cfs) 2.58 544.50 68.15 Top Width (ft) 14.84 36.52 4.53 Avg. Vel. (ft/s) 1.03 4.69 5.04 Hydr Depth (ft) 0.17 3.18 8084.0 Conv. (cfs) 37.9 8003.2 150.00 Wetted Per. (ft) 14.85 38.45 951.30 Shear (ib/sq ft) 0.05 0.87 1.06 Stream Power (ib/ft s) 0.05 4.09 1.16 Curn Volume (acre-ft) 0.01 0.32

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 0 Profile: PF 1

E.G. Elev (ft)	955.46	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.90	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	954.56	Reach Len. (ft)			
Crit W.S. (ft)	954.56	Flow Area (sq ft)	3.14	68.90	3.94
E.G. Slope (ft/ft)	0.015408	Area (sq ft)	3.14	68.90	3.94
Q Total (cfs)	550.00	Flow (cfs)	8.30	531.28	10.42
Top Width (ft)	49.70	Top Width (ft)	11.12	24.62	13.96
Vel Total (ft/s)	7.24	Avg. Vel. (ft/s)	2.64	7.71	2.64
Max Chl Dpth (ft)	3.86	Hydr. Depth (ft)	0.28	2.80	0.28

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 500 Profile: PF 1 (Continued)

Conv. Total (cfs)	7686.1	Conv. (cfs)	64.7	7569.7	51.7
Length Wtd. (ft)	50.00	Wetted Per. (ft)	3.82	26.61	3.16
Min Ch El (ft)	951.80	Shear (lb/sq.ft)	0.17	1.16	0.16
Alpha	1.03	Stream Power (lb/ft s)	0.39	6.51	0.37
Frctn Loss (ft)	0.25	Cum Volume (acre-ft)	0.03	0.80	0.05
C & E Loss (ft)	0.00	Cum SA (acres)	0.09	0.23	0.14

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 450 Profile: PF 1

E.G. Elev (ft)	957.32	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.47	Wt.:n-Val;	0.030	0.045	0.030
W.S. Elev (ft)	956.85	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	0.83	99.01	0.81
E.G. Slope (ft/ft)	0.005050	Area (sq ft)	0.83	99.01	0.81
Q Total (cfs)	550.00	Flow (cfs)	1.56	546.92	1.52
Top Width (ft)	29.00	Top Width (ft)	1.96	25.13	1.91
Vel Total (ft/s)	5.46	Avg. Vel. (ft/s)	1.88	5.52	1.87
Max Chi Dpth (ft)	5.15	Hydr. Depth (ft)	0.42	3.94	0.42
Conv. Total (cfs)	7739.6	Conv. (cfs)	22.0	7696.3	21.3
Length Wtd. (ft)	50.00	Wetted Per. (ft)	2.14	27.41	2.09
Min Ch El (ft)	951.70	Shear (lb/sq ft)	0.12	1.14	0.12
Alpha	1.02	Stream Power (lb/ft s)	0.23	6.29	0.23
Frctn Loss (ft)	0.21	Cum Volume (acre-ft)	0.03	0.69	0.04
C & E Loss (ft)	0.05	Cum SA (acres)	0.08	0.20	0.14

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 400 Profile: PF 1

E.G. Elev (ft)	957.06	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.31	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	956.75	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	0.75	114.94	14.56
E.G. Slope (ft/ft)	0.003513	Area (sq ft)	0.75	114.94	14.56
Q Total (cfs)	550.00	Flow (cfs)	1.10	526.67	22.23
Top Width (ft)	71.05	Top Width (ft)	2.01	30.18	38.85
Vel Total (ft/s)	4.22	Avg. Vel. (ft/s)	1.46	4.58	1.53
Max Chl Dpth (ft)	5.15	Hydr. Depth (ft)	0.37	3.81	0.37
Conv. Total (cfs)	9279.9	Conv. (cfs)	18.6	8886.3	375.0
Length Wtd. (ft)	50.00	Wetted Per. (ft)	2.15	32.08	38.86
Min Ch El (ft)	951.60	Shear (lb/sq ft)	0.08	0.79	0.08
Alpha	1.13	Stream Power (lb/ft s)	0.11	3.60	0.08
Frctn Loss (ft)	0.17		0.02	0.57	0.13
C & E Loss (ft)	0.00		0.08	0.37	0.04

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 350 Profile: PF 1

E.G. Elev (ft)	956.88	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.36	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	956.52	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	11.13	101.41	12.63
E.G. Slope (ft/ft)	0.003473	Area (sq ft)	11.13	101.41	12.63
Q Total (cfs)	550.00	Flow (cfs)	19.76	507.76	22.48
Top Width (ft)	72.83	Top Width (ft)	23.01	23.72	26.09
Vel Total (ft/s)	4.39	Avg. Vel. (ft/s)	1.77	5.01	1.78
Max Chi Dpth (ft)	5.02	Hydr. Depth (ft)	0.48	4.28	0.48
Conv. Total (cfs)	9332.2	Conv. (cfs)	335.2	8615.5	381.5
Length Wtd. (ft)	50.00	Wetted Per. (ft)	23.48	24.57	26.51
Min Ch El (ft)	951.50	Shear (lb/sq.ft)	0.10	0.89	0.10
Alpha	1.21	Stream Power (lb/ft s)	0.18	4.48	0.18
Frctn Loss (ft)	0.20	Cum Volume (acre-ft)	0.02	0.44	0.02
C & E Loss (ft)	0.01	Cum SA (acres)	0.07	0.14	0.02

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 200 Profile: PF 1

E.G. Elev (ft)	956.68	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.34	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	956.34	Reach Len. (ft)	150.00	150.00	150.00
Crit W.S. (ft)		Flow Area (sq ft)	2.51	116.05	2.83
E.G. Slope (ft/ft)	0.004629	Area (sq.ft)	2.51	116.05	2.83
Q Total (cfs)	550.00	Flow (cfs)	2.58	544.50	2.92
Top Width (ft)	68.15	Top Width (ft)	14.84	36.52	16.79
Vel Total (ft/s)	4.53	Avg: Vel. (ft/s)	1.03	4.69	1.03
Max Chl Dpth (ft)	5.04	Hydr: Depth (ft)	0.17	3.18	0.17
Conv. Total (cfs)	8084.0	Conv. (cfs)	37.9	8003.2	42.9
Length Wtd. (ft)	150.00	Wetted Per. (ft)	14.85	38.45	16.79
Min Ch El (ft)	951.30	Shear (lb/sq ft)	0.05	0.87	0.05
Alpha	1.06	Stream Power (lb/ft s)	0.05	4.09	0.05
Frctn Loss (ft)	1.16	Cum Volume (acre-ft)	0.01	0.32	0.03
C & E Loss (ft)		Cum SA (acres)	0.04	0.11	0.01

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 0 Profile: PF 1

E.G. Elev (ft).	955.46	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.90	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	954.56	Reach Len. (ft)	100		
Crit W.S. (ft)	954.56	Flow Area (sq.ft)	3.14	68.90	3.94
E.G. Slope (ft/ft)	0.015408	Area (sq ft).	3.14	68.90	3.94
Q Total (cfs)	550.00	Flow (cfs)	8.30	531.28	10.42
Top Width (ft)	49.70	Top Width (ft)	11.12	24.62	13.96
Vel Total (ft/s)	7.24	Avg. Vel. (ft/s)	2.64	7.71	2.64
Max Chl Dpth (ft)	3.86	Hydr. Depth (ft)	0.28	2.80	0.28

Plan: 550 CFS River: haughey Reach:haughey Riv Sta: 0 Profile: PF 1 (Continued)

Conv. Total (cfs)	4430.8	Conv. (cfs):	66,9	4280.0	84.0
Length Wtd. (ft)		Wetted Per. (ft)	11.14	26.70	13.97
Min Ch El (ft)	950.70	Shear (lb/sq ft)	0.27	2.48	0.27
Alpha	1.10	Stream Power (lb/ft s)	0.72	19.14	0.72
Frctn Loss (ft)		Cum Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

Profile Detailed Hydraulic Analysis: Modified Condition

Plan: final plan River: haughey Reach:haughey Riv Sta: 1400 Profile: PF 1

E.G. Elev (ft)	958.40	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.00	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	958.40	Reach Len. (ft)	200.00	200.00	200.00
Crit W.S. (ft)	955.40	Flow Area (sq ft)	940.59;	787.68	550.93
E.G. Slope (ft/ft)	0.000010	Area (sq ft)	940.59	787.68	550.93
Q Total (cfs)	550.00	Flow (cfs)	224.34	187.95	137.71
Top Width (ft)	1019.10	Top Width (ft)	509.27	231.82	278.01
Vel Total (ft/s)	0.24	Avg. Vel. (ft/s)	0.24	0.24	0.25
Max Chl Dpth (ft)	4.40	Hydr. Depth (ft)	1.85	3.40	1.98
Conv. Total (cfs)	171932.5	Conv. (cfs)	70129.8	58752.8	43049.8
Length Wtd. (ft)	200.00	Wetted Per. (ft)	509.28	232.01	278.04
Min Ch El (ft)	954.00	Shear (lb/sq ft)	0.00	0.00	0.00
Alpha	1.00	Stream Power (lb/ft s)	0.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	5.64	28.96	4.70
C & E Loss (ft)	0.00	Cum SA (acres)	4.14	7.57	3.19

Plan: final plan River: haughey Reach:haughey Riv Sta: 1200 Profile: PF 1

E.G. Elev (ft)	958.40	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.00	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	958.40	Reach Len. (ft)	200.00	200.00	200.00
Crit W.S. (ft)		Flow Area (sq ft)	185.67	2408.45	387.18
E.G. Slope (ft/ft)	0.000006	Area (sq ft)	185.67	2408.45	387.18
Q Total (cfs)	550.00	Flow (cfs)	24.54	469.67	55.80
Top Width (ft)	1079.76	Top Width (ft)	159.50	628.21	292.06
Vel Total (ft/s)	0.18	Avg. Vel. (ft/s):	0.13	0.20	0.14
Max Chl Dpth (ft)	4.90	Hydr. Depth (ft)	1.16	3.83	1.33
Conv. Total (cfs)	228115.6	Conv. (cfs)	10176.3	194797.0	23142.3
Length Wtd. (ft)	200.00	Wetted Per. (ft)	159.51	628.27	292.07
Min Ch El (ft)	953.50	Shear (lb/sq ft)	0.00	0.00	0.00
Alpha	1.04	Stream Power (lb/ft s)	0.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	3.05	21.62	2.55
C & E Loss (ft)	0.00	Cum SA (acres)	2.61	5.60	1.88

Plan: final plan River: haughey Reach:haughey Riv Sta: 1000 Profile: PF 1

E.G. Elev (ft)	958.40	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.00	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	958.40	Reach Len. (ft)	200.00	200.00	200.00
Crit W.S. (ft)		Flow Area (sq ft)	320.92	2012.09	231.80
E.G. Slope (ft/ft)	0.000007	Area (sq ft)	320.92	2012.09	231.80
Q Total (cfs)	550.00	Flow (cfs)	50.71	450.95	48.34
Top Width (ft)	841.97	Top Width (ft)	240.85	486.47	114.65
Vel Total (ft/s)	0.21	Avg. Vel. (ft/s)	0.16	0.22	0.21
Max Chl Dpth (ft)	5.40	Hydr.: Depth (ft)	1.33	4.14	2.02

Plan: final plan River: haughey Reach:haughey Riv Sta: 1000 Profile: PF 1 (Continued)

Conv. Total (cfs)	208744.8	Conv. (cfs)	19246.2	171151.3	18347.3
Length Wtd. (ft)	200.00	Wetted Per: (ft)	240.86	486.66	114.74
Min Ch El (ft)	953.00	Shear (lb/sq ft)	0.00	0.00	0.00
Alpha	1.03	Stream Power (lb/ft s)	0.00	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	1.89	11.47	1.13
C & E Loss (ft)	0.00	Cum SA (acres)	1.69	3.04	0.94

Plan: final plan River: haughey Reach:haughey Riv Sta: 800 Profile: PF 1

958.39	Element	Left OB	Channel	Right OB
0.00	Wt. n-Val.	0.030	0.045	0.030
958.39	Reach Len, (ft)	150.00	150.00	150.00
	Flow Area (sq ft)	223.56	782.49	84.02
0.000049	Area (sq ft)	223.56	782.49	84.02
550.00	Flow (cfs)	93.00	423.55	33.45
458.83	Top Width (ft)	170.95	219.28	68.60
0.50	Avg. Vel. (ft/s)	0.42	0.54	0.40
5.79	Hydr. Depth (ft)	1.31	3.57	1.22
78301.0	Conv. (cfs)	13240.7	60298.2	4762.1
150.00	Wetted Per. (ft)	170.97	219.49	68.64
952.60	Shear (lb/sq ft)	0.00	0.01	0.00
1.04	Stream Power (lb/ft s)	0.00	0.01	0.00
0.01	Cum Volume (acre-ft)	0.64	5.06	0.40
0.00	Cum SA (acres)	0.74	1.42	0.52
	0.00 958.39 0.000049 550.00 458.83 0.50 5.79 78301.0 150.00 952.60 1.04	0.00 Wt. n-Val. 958.39 Reach Len. (ft) Flow Area (sq ft) 0.000049 Area (sq ft) 550.00 Flow (cfs) 458.83 Top Width (ft) 0.50 Avg. Vel. (ft/s) 5.79 Hydr. Depth (ft) 78301.0 Conv. (cfs) 150.00 Wetted Per. (ft). 952.60 Shear (bb/sq ft) 1.04 Stream Power (lb/ft s) 0.01 Cum Volume (acre-ft)	0.00 Wt. n-Val. 0.030 958.39 Reach Len. (ft) 150.00 Flow Area (sq ft) 223.56 0.000049 Area (sq ft) 223.56 550.00 Flow (cfs) 93.00 458.83 Top Width (ft) 170.95 0.50 Avg Vel. (ft/s) 0.42 5.79 Hydr Depth (ft) 1.31 78301.0 Conv. (cfs) 13240.7 150.00 Wetted Per. (ft) 170.97 952.60 Shear (ib/sq ft) 0.00 1.04 Stream Power (ib/ft s) 0.00 0.01 Cum Volume (acre-ft) 0.64	0.00 Wt. n-Val. 0.030 0.045 958.39 Reach Len. (ft) 150.00 150.00 Flow Area (sq ft) 223.56 782.49 0.000049 Area (sq ft) 223.56 782.49 550.00 Flow (cfs) 93.00 423.55 458.83 Top Width (ft) 170.95 219.28 0.50 Avg Vel. (ft/s) 0.42 0.54 5.79 Hydr Depth (ft) 1.31 3.57 78301.0 Conv. (cfs) 13240.7 60298.2 150.00 Wetted Per. (ft) 170.97 219.49 952.60 Shear (lb/sq ft) 0.00 0.01 1.04 Stream Power (lb/ft s) 0.00 0.01 0.01 Cum Volume (acre-ft) 0.64 5.06

Plan: final plan River: haughey Reach:haughey Riv Sta: 650 Profile: PF 1

E.G. Elev (ft)	958.38	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt, n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	958.38	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	61.75	804.76	53.64
E.G. Slope (ft/ft)	0.000067	Area (sq ft)	61.75	804.76	53.64
Q Total (cfs)	550.00	Flow (cfs)	21.17	503.78	25.05
Top Width (ft)	352.35	Top Width (ft)	79.74	229.06	43.55
Vel Total (ft/s)	0.60	Avg. Vel. (ft/s)	0.34	0.63	0.47
Max Chl Dpth (ft)	6.18	Hydr. Depth (ft)	0.77	3.51	1.23
Conv. Total (cfs)	66962.6	Conv. (cfs)	2577.8	61335.4	3049.3
Length Wtd. (ft)	50.00	Wetted Per. (ft)	79.79	229.49	43.62
Min Ch El (ff)	952.20	Shear (lb/sq-ft)	0.00	0.01	0.01
Alpha	1.05	Stream Power (lb/ft s)	0.00	0.01	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	0.15	2.32	0.16
C & E Loss (ft)	0.00	Cum SA (acres)	0.31	0.65	0.33

Plan: final plan River: haughey Reach:haughey Riv Sta: 600 Profile: PF 1

E.G. Elev (ft)	958.38	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.01	Wt.n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	958.37	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	45.00	739.64	52.38
E.G. Slope (ft/ft)	0.000079	Area (sq ft)	45.00	739.64	52.38
Q Total (cfs)	550.00	Flow (cfs)	21.42	502.83	25.75
Top Width (ft)	292.45	Top Width (ft)	39.79	208.52	44.15
Vel Total (ft/s)	0.66	Avg. Vel. (ft/s)	0.48	0.68	0.49
Max Chi Dpth (ft)	6.32	Hydr. Depth (ft)	1.13	3.55	1.19
Conv. Total (cfs)	62044.6	Conv. (cfs)	2416.7	56722.9	2905.1
Length Wtd. (ft)	50.00	Wetted Per. (ft)	39.86	208.97	44.21
Min Ch El (ft)	952.05	Shear (lb/sq ft)	0.01	0.02	0.01
Alpha	1.03	Stream Power (lb/ft s)	0.00	0.01	0.00
Frctn Loss (ft)	0.01	Cum Volume (acre-ft)	0.09	1.44	0.10
C & E Loss (ft)	0.02	Cum SA (acres)	0.24	0.40	0.28

Plan: final plan River: haughey Reach:haughey Riv Sta: 550 Profile: PF 1

i lan. Ililai pian Titivi	ci. Haugiley	reachinaughey Riv Sta. 5	50 Prome: PF 1		
E.G. Elev (ft)	958.35	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.21	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	958.14	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)	955.53	Flow Area (sq ft)	28.88	134.35	22.00
E.G. Slope (ft/ft)	0.001775	Area (sq ft)	28.88	134.35	22.00
Q Total (cfs)	550.00	Flow (cfs)	23.90	509.09	17.02
Top Width (ft)	240.71	Top Width (ft)	115.46	27.97	97.28
Vel Total (ft/s)	2.97	Avg. Vel. (ft/s)	0.83	3.79	0.77
Max Chi Dpth (ft)	6.24	Hydr. Depth (ft)	0.25	4.80	0.23
Conv. Total (cfs)	13055.0	Conv. (cfs)	567.3	12083.9	403.9
Length Wtd. (ft)	50.00	Wetted Per. (ft)	115.62	29.89	97.52
Min Ch El (ft)	951.90	Shear (lb/sq ft)	0.03	0.50	0.02
Alpha	1.51	Stream Power (lb/ft s)	0.02	1.89	0.02
Frctn Loss (ft)		Cum Volume (acre-ft)	0.04	0.94	0.06
C & E Loss (ft)		Cum SA (acres)	0.15	0.26	0.20

Plan: final plan River: haughey Reach:haughey Riv Sta: 500 Profile: PF 1

E.G. Elev (ft)	957.58	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.48	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	957.10	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	2.01	96.87	1.62
E.G. Slope (ft/ft)	0.005120	Area (sq ft)	2.01	96.87	1.62
Q Total (cfs)	550.00	Flow (cfs)	4.63	541.67	3.70
Top Width (ft)	30.92	Top Width (ft)	3.66	24.30	2.96
Vel Total (ft/s)	5.47	Avg. Vel. (ft/s)	2.31	5.59	2.28
Max Chl Dpth (ft)	5.30	Hydr. Depth (ft)	0.55	3.99	0.55

Plan: final plan River: haughey Reach:haughey Riv Sta: 500 Profile: PF 1 (Continued)

Conv. Total (cfs)	7686.1	Conv. (cfs)	64.7	7569.7	51.7
Length Wtd. (ft)	50.00	Wetted Per. (ft)	3.82	26.61	3.16
Min Ch El (ft)	951.80	Shear (lb/sq.ft)	0.17	1.16	0.16
Alpha	1.03	Stream Power (lb/ft s)	0.39	6.51	0.37
Frctn Loss (ft)	0.25	Cum Volume (acre-ft)	0.03	0.80	0.05
C & E Loss (ft)	0.00	Cum SA (acres)	0.09	0.23	0.14

Plan: final plan River: haughey Reach:haughey Riv Sta: 450 Profile: PF 1

E.G. Elev (ft)	957.32	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.47	Wt.n-Val,	0.030	0.045	0.030
W.S. Elev (ft)	956.85	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	0.83	99.01	0.81
E.G. Slope (ft/ft)	0.005050	Area (sq ft)	0.83	99.01	0.81
Q Total (cfs)	550.00	Flow (cfs)	1.56	546.92	1.52
Top Width (ft)	29.00	Top Width (ft)	1.96	25.13	1.91
Vel Total (ft/s)	5.46	Avg. Vel. (ft/s)	1.88	5.52	1.87
Max Chl Dpth (ft)	5.15	Hydr. Depth (ft)	0.42	3.94	0.42
Conv. Total (cfs)	7739.6	Conv. (cfs)	22.0	7696.3	21.3
Length Wtd. (ft)	50.00	Wetted Per. (ft)	2.14	27.41	2.09
Min Ch El (ft)	951.70	Shear (lb/sq ft)	0.12	1.14	0.12
Alpha	1.02	Stream Power (lb/ft s)	0.23	6.29	0.12
Frotn Loss (ft)	0.21		0.03	0.69	0.23
C & E Loss (ft)		Cum SA (acres)	0.08	0.20	0.04

Plan: final plan River: haughey Reach:haughey Riv Sta: 400 Profile: PF 1

E.G. Elev (ft)	957.06	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.31	Wt.n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	956.75	Reach Len: (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	0.75	114.94	14.56
E.G. Slope (ft/ft)	0.003513	Area (sq ft)	0.75	114.94	14.56
Q Total (cfs)	550.00	Flow (cfs)	1.10	526.67	22.23
Top Width (ft)	71.05	Top Width (ft)	2.01	30.18	38.85
Vel Total (ft/s)	4.22	Avg. Vel. (ft/s)	1.46	4.58	1.53
Max Chl Dpth (ft)	5.15	Hydr. Depth (ft)	0.37	3.81	0.37
Conv. Total (cfs)	9279.9	Conv. (cfs)	18.6	8886.3	375.0
Length Wtd. (ft)	50.00	Wetted Per. (ft)	2.15	32.08	38.86
Min Ch El (ft)	951.60	Shear (lb/sq ft)	0.08	0.79	0.08
Alpha	1.13	Stream Power (lb/ft s)	0.11	3.60	0.00
Frctn Loss (ft)	0.17	Control of the Contro	0.02	0.57	0.13
C & E Loss (ft)	0.00	Cum SA (acres)	0.08	0.17	0.04

Plan: final plan River: haughey Reach:haughey Riv Sta: 350 Profile: PF 1

E.G. Elev (ft)	956.88	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.36	Wt.n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	956.52	Reach Len. (ft)	50.00	50.00	50.00
Crit W.S. (ft)		Flow Area (sq ft)	11.13	101.41	12.63
E.G. Slope (ft/ft)	0.003473	Area (sq ft)	11.13	101.41	12.63
Q Total (cfs)	550.00	Flow (cfs)	19.76	507.76	22.48
Top Width (ft)	72.83	Top Width (ft)	23.01	23.72	26.09
Vel Total (ft/s)	4.39	Avg. Vel. (ft/s)	1.77	5.01	1.78
Max Chl Dpth (ft)	5.02	Hydr: Depth (ft)	0.48	4.28	0.48
Conv. Total (cfs)	9332.2	Conv. (cfs)	335.2	8615.5	381.5
Length Wtd. (ft)	50.00	Wetted Per. (ft)	23.48	24.57	26.51
Min Ch El (ft)	951.50	Shear (lb/sq ft)	0.10	0.89	0.10
Alpha	1.21	Stream Power (lb/ft s)	0.18	4.48	0.18
Frctn Loss (ft)	0.20	Cum Volume (acre-ft)	0.02	0.44	0.02
C & E Loss (ft)	0.01	Cum SA (acres)	0.07	0.14	0.08

Plan: final plan	River: haughey	Reach:haughey	Riv Sta: 200	Profile: PF 1

			200 Profile: PF 1		
E.G. Elev (ft)	956.68	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.34	Wt. n-Val:	0.030	0.045	0.030
W.S. Elev (ft)	956.34	Reach Len. (ft)	150.00	150.00	150.00
Crit W.S. (ft)		Flow Area (sq ft)	2.51	116.05	2.83
E.G. Slope (ft/ft)	0.004629	Area (sq.ft)	2.51	116.05	2.83
Q Total (cfs)	550.00	Flow (cfs)	2.58	544.50	2.92
Top Width (ft)	68.15	Top Width (ft)	14.84	36.52	16.79
Vel Total (ft/s)	4.53	Avg. Vel. (ft/s)	1.03	4.69	1.03
Max Chi Dpth (ft)	5.04	Hydr. Depth (ft)	0.17	3.18	0.17
Conv. Total (cfs)	8084.0	Conv. (cfs)	37.9	8003.2	42.9
Length Wtd. (ft)	150.00	Wetted Per. (ft)	14.85	38.45	16.79
Min Ch El (ft)	951.30	Shear (lb/sq ft)	0.05	0.87	0.05
Alpha	1.06	Stream Power (lb/ft s)	0.05	4.09	0.05
Frctn Loss (ft)	1.16	Cum Volume (acre-ft)	0.01	0.32	0.01
C & E Loss (ft)	0.06	Cum SA (acres)	0.04	0.11	0.05

Plan: final plan River: haughey Reach:haughey Riv Sta: 0 Profile: PF 1

E.G. Elev (ft)	955.46	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.90	Wt. n-Val.	0.030	0.045	0.030
W.S. Elev (ft)	954.56	Reach Len. (ft)			
Crit W.S. (ft)	954.56	Flow Area (sq ft)	3.14	68.90	3.94
E.G. Slope (ft/ft)	0.015408	Area (sq ft)	3.14	68.90	3.94
Q Total (cfs)	550.00	Flow (cfs)	8.30	531.28	10.42
Top Width (ft)	49.70	Top Width (ft)	11.12	24.62	13.96
Vel Total (ft/s)	7.24	Avg. Vel. (fl/s)	2.64	7.71	2.64
Max Chl Dpth (ft)	3.86	Hydr. Depth (ft)	0.28	2.80	0.28

Plan: final plan River: haughey Reach:haughey Riv Sta: 0 Profile: PF 1 (Continued)

Conv. Total (cfs)	4430.8	Conv. (cfs)	66.9	4280.0	84.0
Length Wtd. (ft)		Wetted Per. (ft)	11.14	26.70	13.97
Min Ch El (ft)	950.70	Shear (lb/sq ft)	0.27	2.48	0.27
Alpha	1.10	Stream Power (lb/ft s)	0.72	19.14	0.72
Frctn Loss (ft)		Cum Volume (acre-ft)			
C & E Loss (ft)		Cum SA (acres)			

APPENDIX B

INDIANA DEPARTMENT OF NATURAL RESOURCES

PATRICK R. RALSTON, DIRECTOR

Division of Outdoor Recreation 402 W. Washington St., Rm. 271 Indianapolis, Indiana 46204 317-232-4070

March 10, 1992

Mr. David Miller, P.E. Harza Engineering 233 South Wacker Drive Chicago, IL 60606-6392

RE: DNR #4437 - Water Quality Enhancement Project; Hamilton Lake, Steuben County

Dear Mr. Miller:

The Indiana Department of Natural Resources has reviewed the above referenced proposal and offers the following comments for your information.

Sites A, B, E, and G will require the formal approval of our agency for construction in a floodway, pursuant to the Flood Control Act (IC 13-2-22).

The Natural Heritage Program's data have been checked and, to date, no vulnerable plant or animal species of either state or federal significance have been reported to occur in the project vicinity.

The Division of Fish and Wildlife supports projects that benefit the public fresh water lakes, however, these projects should enhance fish and wildlife habitat where habitat per se does not exist.

Division of Fish and Wildlife staff inspected the project area on February 5, 1992. Mitigation will be required for those sites that impact wildlife habitat. Site specific comments include the following:

Site A: The division supports this site. The applicant should be aware that a dam is proposed approximately one mile upstream from Site A. It appears that this will decrease nutrient input to Hamilton Lake.

Site B: The division supports wetland restoration at this site.

Site E: A wooded corridor with existing wildlife habitat exists at this site. If possible, the division prefers that the site be left undisturbed.

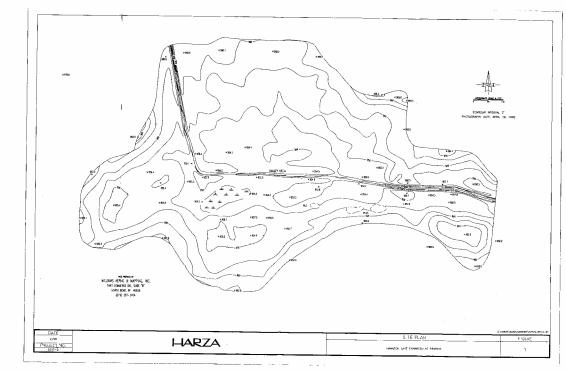
Site F: Woody vegetation of benefit to wildlife exists at this site. Therefore, protection or minimization of impacts is recommended for this site.

Site G: Wetland exists at this site and should be left undisturbed.

Site H: The value or benefit of wetland restoration at this site is not apparent to the division.

It appears that land treatment practices constitute the most significant threat to the existing and future water quality of Hamilton Lake. Therefore, the Division of Fish and Wildlife recommends that these practices be addressed as to their relationship to water quality enhancement.

We appreciate this opportunity to be of service and apologize for not being able to respond to your inquiries sooner on this matter. If we can be of further assistance, please do not hesitate to contact Steve Jose at (317) 232-4070.


Sincerely,

Patrick R. Ralston, Director Department of Natural Resources

PRR:SHJ

cc: Paul Glander, Division of Soil Conservation, Indianapolis, IN

APPENDIX C

REPORT OF SUBSURFACE EXPLORATION AND LABORATORY TESTING

HAMILTON LAKE ENHANCEMENT PROJECT WETLAND DESIGN SITES

HARZA ENGINEERING COMPANY
NOVEMBER 1991

TABLE OF CONTENTS

I.	INTRODUCTION	1
П.	FIELD WORK	1
III.	LABORATORY TESTING	3
IV.	SUMMARY OF FIELD AND LABORATORY RESULTS	
	SITE A	4.
	SITE B	4
	SITE E	4
	SITE F	5
	SITE G	5
	SITE H	6
V.	CONCLUSION	6
EXH	IBITS	
APPE	ENDICES	
	APPENDIX A - SOIL BORING LOGS	
	APPENDIX B - TEST PIT LOGS	
	APPENDIX C - GRAIN SIZE CURVES	
	APPENDIX D - LABORATORY DATA	

I. INTRODUCTION

Subsurface soil exploration and laboratory testing of soil samples were conducted in accordance with the Scope of Services in the Hamilton Lake Enhancement Revised Proposal for Phase II Services (Design), dated August 10, 1990. The results of the soil exploration and testing were used to determine criteria for use in the design of six artificial wetlands proposed for construction to enhance the water quality of Hamilton Lake.

The purpose of this report is to present, summarize, and interpret subsurface and laboratory information that has been gathered as a result of drilling and testing of selected soil samples.

II. FIELD WORK

Field work was conducted on July 30 & 31 and August 6 & 7, 1991. Harza's Mr. Carl M. Brown was responsible for making field observations and for logging boreholes and test pits.

Drilling was conducted by Raimonde Drilling Corporation, Inc., Chicago, Illinois, and test pits were excavated by Butler & Butler Construction, Inc., Auburn, Indiana. The subsurface exploration program is summarized below and in Table I.

At site A, which is located on Haughey Ditch (see Exhibit 1), two boreholes were drilled and two test pits were excavated. At site B, located on the Lillian Metz Ditch, upstream of the confluence of Burch Ditch, two test pits were excavated. At site E, located on Black Creek east of Highway 1, two borings were made and one test pit was excavated. At site F two test pits were excavated. At site G, located east of the sand and gravel pit operated by Flegal Sand & Stone Company, three soil borings were made. At site H, located across the county road west of site G, one test pit was excavated.

Table I - Hamilton Lake Enhancement Project Summary of the Subsurface Exploration Program

Site	Soil Borings	Location	<u>Dates</u>	Test Pits	Location	Dates
A	Two: AB1 AB2	Rt. Abut. Lt. Abut.	8/7 8/7	Two: AT1 AT2	Rt. side Rt. side	7/31 7/31
В	None			Two: BT1 BT2	At dam Rt. side	7/31 7/31
Е	Two: EB1 EB2	Lt. Abut. At dam	8/7 8/7	One: ET1	Lt. side	7/31
F	None			Two: FT1 FT2	Lt. Abut. Center	8/7 8/7
G	Two: GB1 GB2 GB3	Lt. Abut. Dam Cntr. Rt. Abut.	8/6 8/6 7/30	None		
H	None			One: HT1	D/S dam	7/31

All borings were advanced using 4-1/2" I.D. hollow stem augers powered by a CME 55 track mounted drill rig. Samples were obtained at 2-1/2 foot intervals by split spoon sampling according to ASTM D-1286. Representative samples were placed in glass jars and retained by Harza for testing in Harza's soil laboratory.

Insitu shear strength was measured in the field using a pocket penetrometer and a hand torvane shear strength test kit.

III. LABORATORY TESTING

Laboratory testing included Atterberg Limits, gradation analysis, visual classification, and standard Proctor for selected samples. The laboratory testing program is summarized on Table II below.

	Table II	- Hamilton La	ake Laboratory	Soil Testing P Moisture	rogram Standard
Site	Sample	Limits	Gradation	<u>Content</u>	<u>Proctor</u>
Site A	AB1-S1	xx	xx	xx	•
Site A	AB1-S2	xx	xx	xx	
Site A	AB2-S1	xx	xx	xx	
Site B	BT1-S1	xx	xx	ХX	
Site B	BT2-S2	xx	xx	XX	
Site B	Creek	XX	xx	xx	
Site E	EB1-S1		XX	xx	
Site E	EB1-S3		XX	XX	
Site E	EB1-S5		XX	XX	
Site E	EB2-S1	XX	XX	xx	
Site E	EB2-S2	XX	XX	xx	
Site E	EB2-S3	XX	XX	xx	
Site E	ET1-S2		xx	XX	XX
Site E	Creek		XX	xx	
Site F	FT1-S1	XX	xx	XX	
Site F	FT1-S2		xx	xx	
Site F	FT2-S1	XX	XX	XX	
Site F	FT2-S2	XX	xx	xx	
Site F	FT2-S3		XX	xx	xx
		· · · · · · · · · · · · · · · · · · ·			
Site G	GB1-S1		XX	xx	
Site G	GB1-S2		XX	xx	
Site G	GB1-S3	XX	XX	xx	
Site G	GB3-S6		XX	XX	
					
Site H	HT1-S2	XX	XX	xx	xx
Site H	Creek	XX	XX	xx	
Total		15	25	25	3

IV. SUMMARY OF FIELD AND LABORATORY RESULTS

SITE A. At Site A, soil borings were located on either side of the proposed dam, and two test pits were excavated within the proposed wetland area (see Exhibit 2). The upper 8-10 feet of soil is stiff silty clay with some sand (CL) or stiff clayey silt (ML). Below the silty clay lies gray clay (CL). The gray clay includes a two foot thick soft layer which lies above and below a very thin (2-4 inches thick) coarse sand layer which is located approximately at the depth of the water table. Below the soft layer, the gray clay becomes medium to hard.

Gravelly clay was encountered at a depth of about 18 feet beneath the proposed right abutment, and gravelly clayey sand was found at a depth of 4.5 feet in one of the test pits. The gravelly layers do not appear to be continuous and contain at least 40% fines. Seepage under the embankment dam along gravel layers is unlikely and a seepage cut-off is not necessary.

Excavation of a grass channel spillway or of a deep pool to increase sediment trapping efficiency upstream of the dam will provide suitable embankment fill material. The natural moisture content of the upper 5 feet of soil is below the plastic limit, therefore, preliminary indications are that excavation and compaction of this material will not be a problem during construction.

SITE B. Two test pits were excavated at Site B in the vicinity of the proposed wetland (see Exhibit 3). The soil, to a depth of about 12 feet, varies between silty clay (CL) and clayey silt (ML). Some sand lenses were found, however, they were discontinuous within the test pits.

The moisture content of the upper few feet of soil is below the plastic limit, therefore, no problems should be encountered in working the soil during construction.

SITE E. Two soil borings and one test pit were conducted at Site E. One soil boring was located on the left abutment of the proposed dam and the other was located in the bed of Black Creek upstream of the proposed dam (see Exhibit 4). The test pit was located above the Black Creek flood plain to the left and upstream of the proposed dam.

The left abutment, to a depth of about 10 feet, is silt (ML), silty sand (SM), and gravelly silt (GM). From 10-11 feet, there is a layer of well-graded quartz sand (SW). Below the sand layer the soil is gravelly sand and gravelly sand with some clay clasts to a depth of about 15 feet at which depth the soil is again silt and silty sand. The uncorrected SPT blowcount values (N) are high, ranging from 14 to 34, therefore, the abutment is relatively dense.

The existing creek bed has a layer of gravel about three inches thick which overlies gravelly silty sand (SM) to a depth of about eight feet. From depths of 8-13 feet, the soil is hard gray clay (CL). The foundation soil should have adequate bearing capacity as evidenced by the uncorrected SPT blowcount values.

In the location of the test pit, the topsoil was 1.5 feet thick. Below the topsoil was a layer of gray medium to hard silty clay (CL) extending to a depth of 5 feet followed by a gray clay (CL) to a depth of 6.5 feet. From 6.5 feet to the bottom of the test pit (11 feet deep) was a layer of silty sandy gravel with some cobbles (GP-GM). The water table was at a depth of about 7.5 feet. The gravel was probably deposited along Black Creek before the creek eroded down to its present level. The gravel is similar to existing gravel along the present creek bed and has a high permeability as evidenced by the rate that water entered the test pit. The existence of a continuous gravel layer within the foundation material below the dam indicates that consideration should be given to design of a seepage cutoff beneath the proposed structure.

SITE F. Two test pits were excavated at Site F, one located at the location of the proposed left abutment and the other in the center of the proposed wetland (see Exhibit 5).

At the location of the left abutment, the soil is clayey sand, silty sand and gravelly clayey sand (SC) to a depth of about 5 feet. From 5-7 feet in depth, the soil is poorly graded sand with some silt (SP). From 7-12 feet, the soil is gravelly sand with clay clasts.

In the center of the wetland site the existing topsoil is over three feet thick and is dark brown, organic, silty sand. Below the topsoil is medium gray clay and clayey gravel.

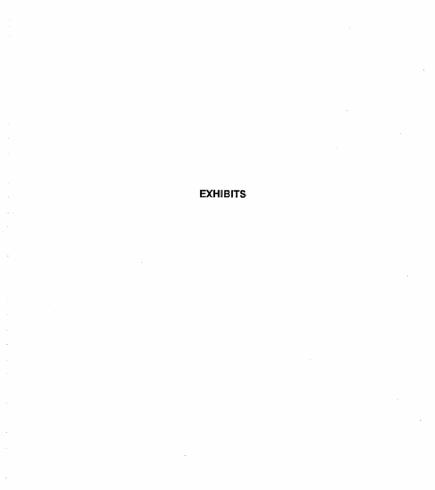
<u>SITE G.</u> Site G is an existing emergent wetland, therefore, to minimize preconstruction impact, no test pits were excavated. The three borings conducted at the site are adequate to define the soil layer types and thicknesses.

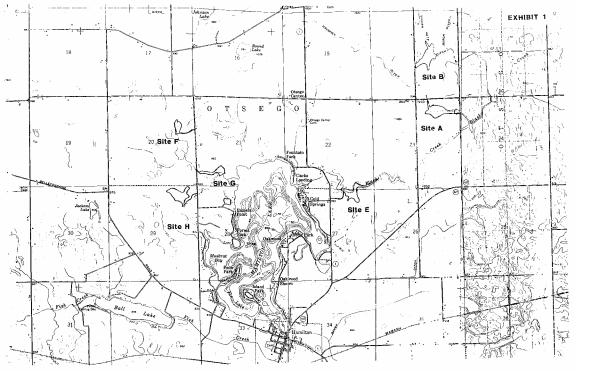
There is a layer of soft, black silty organic soil up to 11 feet thick deposited throughout the site from abutment to abutment. The boring on the left abutment, however, was located on a bench midway up the abutment and was above the contact between the black organic soil and the underlying silty sand (see Exhibit 6).

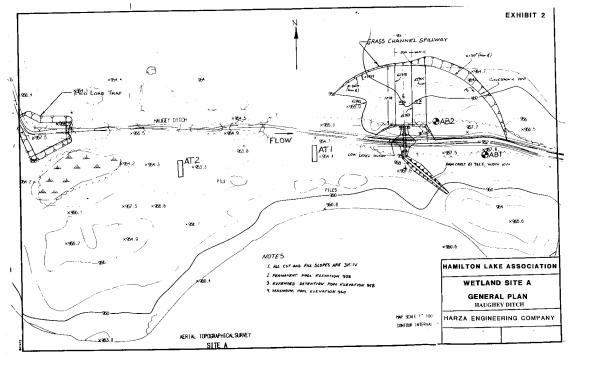
The left abutment and the soil beneath the organic soil is predominately silty sand (SM). However, there is a clayey sand layer from about 10-14 feet in depth at both the left abutment and right abutment, and some gravels with the sand below the clayey sand at the right abutment.

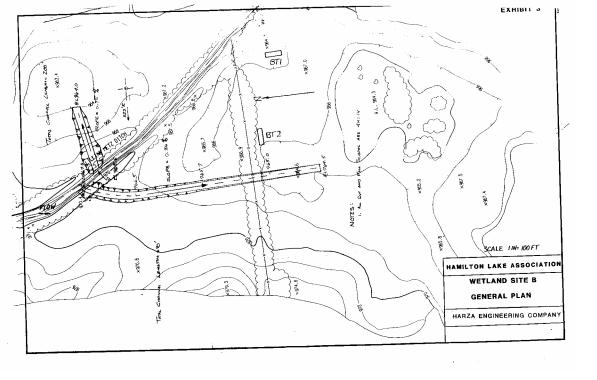
The uncorrected SPT blowcount values ranged from 8 to 13 in the left abutment. The abutment should provide an adequate foundation for the proposed box-culvert spillway. Consideration should be given to removal of the thick organic foundation material or to improving the material's stability by preloading and consolidation. To verify that there is adequate lateral area on the left abutment for construction of the box-culvert spillway, a hand auger boring program is recommended to further define the contact between the soft black topsoil and the silty sand foundation soil.

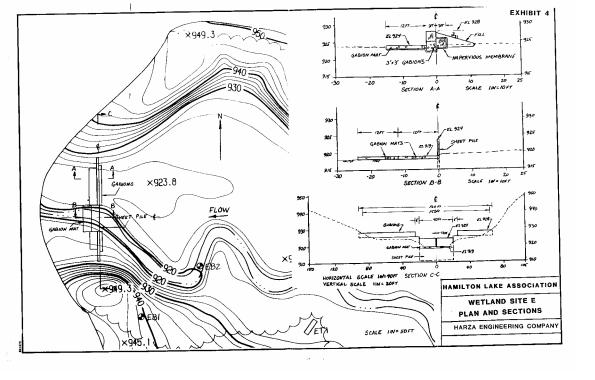
<u>SITE H.</u> The test pit excavated at Site H revealed that the creek bank at the test pit location consists of silty organic topsoil and sandy silty clay to a depth of about four feet followed by a silty sand layer (SM) at least 10 feet thick.

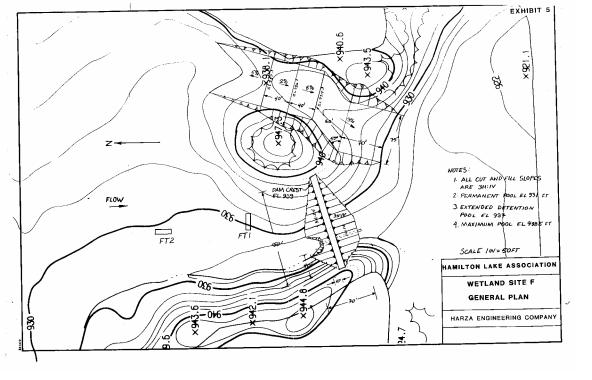

The test pit was located on the left bank about 200 feet downstream of the existing berm at Site H (see Exhibit 7). If the proposed dam is to be located downstream of the existing berm, the upper sandy silty clay is suitable for embankment fill material while the silty sand is adequate for the spillway foundation.

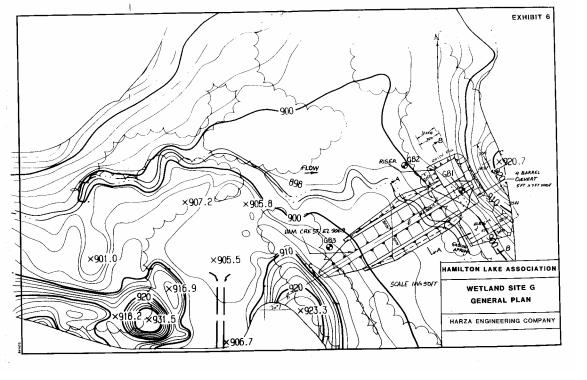

If the existing berm is utilized as the lower half of the embankment dam, then a hand auger boring program is recommended to further define the foundation soils at the right abutment and the existing fill in the berm.

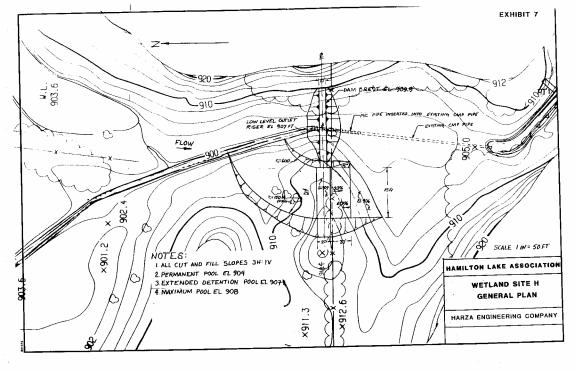

V. CONCLUSION


The exploration program which was conducted at the proposed wetland sites should be adequate for the design and construction of wetlands in Sites A - F. The field exploration and laboratory testing programs have revealed information regarding the soil layers and construction materials at the wetland sites. The foundation conditions at the sites are well defined and suitable material for fill has been located.


Additional information may be required for Site G and Site H. If necessary, a program of hand auger exploration developed on the basis of design requirements should be sufficient to supplement the existing data.







APPENDIX A - SOIL BORING LOGS

Project Name HAMILTON LAKE Boring No. ABProject Number 52576 Client HAMIL TON LANE HISINI Location RT SIDE OF CREEK WATER LEVEL 470 Coordinates: N AT SITE OF Contractor RAIMONDE DRILLING TIME + PROPOSED DAM Drilling Method SPT DATE 0/2 Ground Elevation ___ 140 14 Total Depth 19 F7 Date Started <u>7/3//9/</u> Logged by LABROWN, HARZA Sampler Dimensions 2ft Split spoon Date Completed 3/3/1/5/ Sample Depth (ft/m) NOTES 6 in/15 cm Length Driven (in/cm) Blows per 6 in/15 cm ength Recovere (in/cm) Unified Soil Classification Depth (ft/m) Sampler Type Casing Depth (ft/m) Sample No. SOIL DESCRIPTION AND FIELD TESTS Surface Conditions: edge of beanfield 0 MB1 tan chayen silt 5 12 45 41 2 pocket penetro dry gray clay, some sill 7000 ť 18 52 55 5 dig very stiff silty clay 53 55 9 4.25 tst 4.25 tsf 4.25 tsk 18 No recovery. 54 55 4 011 9 10 Soft gray clay 1811 CS 55 7 Soft gray clay 11 12 3 13 18" >4.5+5+ 4.5+5+ stiff gray day 56 55 15 med gray clay CL 57 55 12 dk years fine growth and med-const SAND SC 12 gray growelly clay 18 **58** 55 dkyg clayey, pobley, sand EOB - 19 feet 19

Proje	ot Ni	ımbar	. 5	725	71	,		Pro	oject Name <u>#</u>	4m/127	or ch	THE .	Boring No	A 152	
Proje: ∩lien:	. 44	-mber 	Tow (Lan	× 4.	5 50	v.	Γv	WATER LEVEL	82'	15		Location 4	A BUTMEN	سر
Conti	ractor	RA	mor	DE	4 50	-w5			TIME	6PM	+ -		Coordinates:		
Drilli	na M	ethod	50	115	901	W.			DATE	8/7	8/7			E	,
Hole			-,				_	Camr.	ple Hammer: We		1.		Ground Eleva	211 CL	
Drille	۔ عادی ج	Pa	1111	WD!			_	Same		rop 3			Total Depth .	24 ft Aug 7, 1991	,
	ed by		1 11	10		_		Samr	oler Dimensions		+ 50%	1 speer	Date Started 2 Date Complet	red 8/7/9/	
			7	77	<u> </u>	<u> </u>	Casing Depth (ft/m)	38	Mer Dinional				- Date Co,	NOTES	
(E)	Sample Depth (ft/m)	ي ا	ype	F E	i šel) vere	tid	tio ti		SOI	L DESCF	RIPTION		AND	
Depth (ft/m	t/m)	Sample No.	Sampler Type	Ws p	ار ت	Recc	9 7	fica (FIELD TES	STS
ept	DE +	Sam	du	Blo,	Į į	fg ;=	asin	Jnifi	Surface Cond	litions:					
_	Sa	<u> </u>	Š		ا گ	Le	Ü	اهر				/			
0				↓ -					edge of	bear	FIELD	7			
	 !	{ <u>, </u>	 -	4	ļ!	12	!		edge of	ry c	layey	silt	_	! -	-
4	- 1	51	55			11/			1		-,			ł	-
レ	-	1		6		1							7	-	
1				<u> </u>]	1!							,]	· _ /	<u> </u>
-3 -	$\Gamma \perp$		Ī	3	!	لحرا	!		roda	a ari	ay M	offled si	14 clay	3.75 f	TENET
	1-1	52	95	6	ļ!	15		-		U	ン	7.76, 3.	″グ゛コ -	3.757	sr _
4-	-	-		13			!		1					f ·-	-
	ļ					- 1		1-1					+	H	-
5			1	5	1		1	1	soft.	gray .	day			1.75/58	_
6		53	45	5		10	ļ . J		AT BUL COL	se 32	NEW	c/an + fi	in are we	-	_
	لسا	/ '		2	ļJ				5044	say	day	clay + fi	-	r.	_
7					1					1	ーノ		-	<u> </u>	-
- ?				14					120	- 4.	-lan			1	-
v		157	55	13		15			- 5711/	Jim	. = >	ay otar	~圣]	- 4,5-58	_
9	\sqcup		ļ'	14	[J	1,-1	ļ!		mex	- Soty	1 gro	y oran	ン - ͺͺ	2 136	_
		'		!					1					 -	-
<i>10</i> ;		1 -		12				-					-	i-	_
11		155	55	17		18			soft gray	clarge	7 51	77			-
77				15					504 SAN	10y 5	1/1			-11+56	_
11		 '	<u> </u>	['	\square	Ш	1		1	•				_ L	
	-	 	ļ!	1,,			1—1	\vdash		,,	,		-	F	
13	1	56	3 5	14	-	19		1	157.1-	silly	, clay	7	-	- 4.25+54	_
14				12					1		/			_	
77		'							1,	,	a. f	1	J		
15	 	1	ļJ	ļ!		\square			(water level	1 ster i	dollary,)	_	—	_
·	1				-	1-1		1	Ì				-	1-	_
16	1												-	-	_
17	i. 7	1											J		3
- 1		1. 1	ll	1	1]		1		95AN19	ciltr	clay			4.5151	_
18		147	55	8		16,m			SHAZY	3117					_
- 1	.	1	1	13	1 - 1	10			gray cl	lay			-	= 3.0+4.f 2.5-4.f	-
19		1	1	24	ĺ	1	- 1		y wy	9			-	_ 2.5 71	7
- 1	, 1	()	()	į †	ı t	. 1	1	J	ı				-1	-	-

Proie	ect Nu	umbe	r					Pro	oject Name	Boring No. ABZ	
Clien		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						V	NATER LEVEL	Location	_
	ractor								TIME	Coordinates: N	_
		lethod	4						DATE	E	_
	Size _							Same.	- II Walaka	Ground Elevation	_
noie Drille								Samp	ole Hammer: Weight	Total Depth	_
								^	Drop	Date Started	_
	ed by	_				10		Samp	oler Dimensions	Date Completed	=
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	Blows per in/15 cm	Length Driven	Length Recovered (in/cm)	Casing Depth (ft/m)	Unified Soil Classification	SOIL DESCRIPTION Surface Conditions:	NOTES AND FIELD TESTS	
	†	S	Š		Ler	Lenç	రొ	ات⊂			
20	-	-	+-	+	-	-		\vdash		+	-
2+				1						†	-
	ļ.,			1	1'					土	-
22		<u> </u>	ļ		!		ļ			Ţ	_
		-	-	10	ļ1	· ·			gray had silty classed	>4.5tsf	
23		-11	1-	10	 	14	-		יי כייי בייי	4.575f	_
14		58	55	22		-		\vdash	101	+ 4.0755	-
241		ļ	1	1	1			1	EOB 2411	+	-
				1					·		-
	1. 1			1						<u></u>	_
				ļl						1	_
					 					4-	
†	1			1	+					+-	_
			- +	1						+-	-
		i!	1 7	1			-			+	_
		1!	<u> </u>	1)						+	_
		i!	1-1		1-1		, .			T	_
		!	J	1	i	ı 				1	_
		, J	f1	1	1-					4-	_
		-	-	1	-	-				+	_
				1	1					+	+
										+	+
										+	7
		,I	1	\coprod		-	_			<u> </u>	7
				1	,+					\perp .	
\dashv	-+		i				\dashv				Ì
-			1	t	-	\dashv	\dashv	\dashv		+	4
			1	1						+ -	-
					- 1	1					1
										-	1
			1							-†-	1
										1]
				1						4.]
	+	+	,							+ -	4
		-	. +							<u> </u>	4

Projec	ct Nu	ımber	52	257	4			Pro	oject Name #4	MLLTOI	V ZAKE	ENTI	Boring	No	EB-/	
Client	t <i>44</i>	116	100	VL	MA	A	550	(V	WATER LEVEL	22'			Location	on <u>201</u>	14 ABUTMENT	
Contr	ractor	FAI	IMOR	NDE	· 2	SON	V5		TIME	200PM				inates: N		
Drillia	na Me	ethod	506	-17	50	08N	<u> </u>		DATE	8/7				Ε	E	
المام المام	Ciza	4	F IN	ID	Holli	21	WER	, came	ple Hammer: We	-:-he /	14016		Ground	d Elevat	tion 940 ft	
Drille Drille	- عادد جسر .	24	mon	VDE			<u> </u>	Same		op	BOIN		Total [Denth	2414	
Ul line		<u>C</u> 1	MR	> 1				comr	טר pler Dimensions			DOON			B/7/9/ ed 8/7/9/	
				_	_	<u>ق</u>	=	Janne	Jier Dimensions		VFIL		Date	Complete	77	
Ê	ta l	ق ا	e A	F E	. ven	vere	둦	- <u>6</u>		SQII	L DESCRIF	PTION		- [NOTES AND	
(ft/m)	ع ق	يو ا	É	s pe	۶ <u>و</u> ق	8 E		d S							FIELD TESTS	
Depth	Sample Depth (ft/m)	Sample No.	Sampler Type	No 'r	를 를	Length Recovered (in/cm)	Casing Depti (ft/m)	Unified Soil Classification	Surface Cond	itions:						
۵	San	Š	San	8 9	- Fe	eng	Š	⊃ö								
├	\square	-	 	+	+-	-	\vdash	\vdash	Ruge SESI.	rer	*			$\neg \neg$		
0		<u> </u>		P	1	A	-			-tage/	organi	c sanky	5.47	501	<u> </u>	-
		13-1	35	15	18	10	0	ML	ש ענעסים	lay si	IF win	th some	-trace	•	_	_
\Box	ل			18	<u> </u>		<u> </u>	m-			grave	-/		1	_	_
2	\Box	ļ	ļ'	<u> </u>		.ļ'	ا اا							4	-	_
	-	 		10	-	'	 	-		-, -	hinds of	/ - - - -	-1-			_
3	1-1	10	35	18	18"	0'-	2.5		mm	mue	pusien	JINE	<i>/ ·</i>	4	-	_
		52	35	12	10		-		1					-	_	_
4	_		1 '	1										7	-	-
5			1	-	1	1			It brown	, ,/	/·/ a	· · · · · · · · · · · · · · · · · · ·	9	.4	-	-
ラー				9	1	.,"	5	1	It brown	to wh	1-c, 7	from.	* P	' "]		_
6		53	95	7	18"	10	1	ילי	Sia	بهر مسد	sub Rol	ששעונו		+	_	_
	,	∤ !		1.7		 			L							
7	,				ļ								_	+		-
8		1 -		16		1	1-21		//	,	11			+	_	-
٦		54	55	13	2	14"	7.7	ML	yellon	den	51/			1	-	-
9		i!		14	~					/				1	_	_
		,	[]		ļ!	[]	ļ J		- = à mge	red Th	in gi			- 7	-	_
10	-	j!		4	ļļ	ļJ	ļ J								_	_
-		55	55	8	18"	16"	10		graye	white s	fine of	SAND		-	-	_
#		-		8	1						,		-20 15	CAN	_	-
12									H gray	suba	graver	1 2 mm 1	-del-co		- .	-
-											7	٠٠٠- ٠٠ فم	310	Tre/	_	_
13		7	لجدا	12		_,1	لنه. ا		PLOWN	Lin W	- 0/4 %	-el tor	04		_	
	1-	561	احرا	3	18	18	122	SC	w	1 clan	alazta	ned toca	mer cla	- marine	 	_
14		_!	\vdash	1	├ —-		ı						~ <u>_</u> =			4
			1		·	-	1-1		cobbles	or gr	ave/			+	- augered thin	4
15			[1-1	1	i —						+	_ ,	-
16	_			1							_			-	_	٦
12				1		1]			//	- 1/				1	-	
17		, ,	,	,!	ļJ	1	,	ı	gellow	511				\Box	-	
i 1	\rightarrow			أرزا	اـــا	1	, , l	ML						4.	-	4
18		57	45	16	18	15"	175		gellow si	14 60 0	/ 6'1	11 /:	114%	1	~	4
	1		,	13	10-1	15"		SU	901100 31	y saus	> 4/ 51/	't lease •	. ,,,,,	^ +	-	4
19	\neg		, 1	17	i 1	, -	<i>i</i> 1	, ·						+		\dashv
			.	, 1	i 1	.	.							-	-	-

Proje	ect N	umbe	r _					Pro	oject Name	Basina Na	(B) 4 about men		
Clier								Г	NATER LEVEL	Location 4ex	4 about ment		
	racto	r							TIME	Coordinates: N			
									DATE	E			
	Size		_					Come	ole Manager Weight	Ground Elevation			
Drille								Samp	ole Hammer: Weight	Total Depth			
	ed by	,	Cr	1 R				C	Drop Dler Dimensions	Date Started			
Logg	_	_		$\overline{}$	7	10				Date Completed	1		
Depth (ft/m)	Sample Depth	Sample No.	Sampler Type	lows per n/15 cm	ath Driven	h Recovere	Casing Depth (ft/m)	Unified Soil Classification	SOIL DESCRIPTION Surface Conditions:		NOTES AND FIELD TESTS		
Ö	Sam	SS	Sam	B 9	ie.	Lengt	Cas	5 కొ	Sarrage Softaltions.				
20	-	 	-	13)(white same sitt	-	_		
21		158	55	13	18	12			white saffy sand		·		
27			-	18					- ₹	<u>+</u>	·		
	-	-		10					, , , , ,	· -	_		
23		29	155	12	18	12			White Sifty fine SAN	> +	-		
24		27	1	12	10	,,,			white silty fire saw		-		
101]		ļ. <u>.</u>				-	= B = D Z =				
25]_	_		
ł													
			1	†						+-	-		
				1						1-	-		
			ļ	ļ ļ			_				J		
										+	_		
			l		-						4		
				1						-1-	· =		
										1			
			l·	{ }						4			
							\dashv			- -	4		
	***							\neg		+	-		
											- 1		
										7]		
										-	4		
		~				\neg	\neg			+	4		
										+			
									3		• -		
										4]		
										+	4		
										+	-		
										<u> </u>	4		
			-							7]		
1	-	+								+	_		
		j					1				-		

Proie	ct Nu	mber	52	257	5_			Pro	ject Name Boring No	E15 2
Client	44	MLT	ON L	AKE	- A	550		\	ATER LEVEL 44 Location 57	tream bed NE of bytas
Contr	actor	RA	MI	NE	EZ	RIL	MC		TIME 3 pm Coordinates:	N
Drilli	na Me	ethod	51	05					DATE 6/7/91	E
Hala	Ciza	L IN						Samo	le Hammer: Weight 140 16 Ground Elev Total Depth	ation 920+4
Drille	, <i>P</i> .	R41	MBA	DE				5 0.11p	Drop 30/N Date Started	Aug 7, 1991
Longe	d by		M	R. A	FAR	7A		Samn	Date Started	eted Aul. 3. 1991
Logge				7	T	Ď			in planetsions	NOTES
Ē	Sample Depth (ft/m)	ا ف	Ape.	a E	ž _	vere	Casing Depth (ft/m)	io o	SOIL DESCRIPTION	AND
Depth (ft/m)	g E	Sample No.	Sampler Type	15 p	5 <u>5</u>	on E	å Ê	Unified Soil Classification		FIELD TESTS
뒽	g £	E E	d d	Ş.E	활흥	ŧΞ	ig #	nifie assif	Surface Conditions:	}
ا م	San	Š	ર્જ	9	قا	eng.	రొ	ว์ซั		
┢		-	-			_			3 m gravel in steam tol	
0	1	£32		1	-11					1]
1	9	sΤ	55	9	18"	10"		SC	brown saway class	
·	\mathcal{F}		ļ	7	ļ—				-	+ 4
2			ļ						yellow sandy clay	
	-	i		10		,			noll ac a la class	+ -
3	 		45	13	18	12"			guion sandy 4mg	1
4	i	50	5	13	1				Z- wy ginia	† 1
7-								•		\mathbb{I} 3
5-									saturated sandy day	I]
l				10	18"				3.0,0,0,0,0	+
6		PO	55	10	JB	12			Wach silts fine sport to fine wall	, }
7_	_		 	7	 			\vdash	black silty fine sand to fine grave shall thakes my jude sand.	1
										·T 1
8				15						I_{α}
		54	55	14	18"	12			gian hard clay	Foclet Pentramo
9.		ļ		4/	Ĭ					4:0754
ļ					ļ				-	+ tovan
10				17					- دخت 0 منجمع ما الله الله	┼ ^{~⊁} ┤
"		55	55	15	18	0"			clay must have remained in Lale	† 1
#			25	19	·					† ^ 4.4
12				17						+ Pocket -
		,		ļ.,	ļ				hatt of sample gray class class some sampy class - gray silt - EOB - 14ff	3.5 + c = 3.5 + c = 4.0 + c = 1
13		ļ	23	9	IR	18-			half brown SANDY c/ay -	
		[ر ر	5000	70	<u> </u>			gray sift	Pocket penetrometa
14-	_			/					-E08 - 14fg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
سرد										† <i>1464</i>]
15									/	I 1
16									· -	∔
									_	+ -
17									-	+ -
18									-	+ -
10									-	† †
19										1]
′′									· _	1
	1	1 1								1

Project Nun	nher # 2	257	16			Pro	oject Name HAMILTON LAKE	Boring No.	[R-1
Client 4	2167	W	4	er i	Assi		VATER LEVEL	Boring No. 7 Location 46	H abutment
Contractor_					/	\Box	TIME	Coordinates:	
Drilling Met	had 50/	1;4 4	5000	ه سره	_	\vdash	DATE		E
	1100 <u>- 2,2-</u>		401	lan 9	5/en	AUG	Je Hammer: Weight 14016	Ground Eleva	tion 904
Hole Size	:180	1/No	2417			Samp	Transmer: Weight	Total Depth	244
Driller 2	CMI	_		_			Drop 30/N	Date Started .	8/6/9/ 430-6PI
Logged by_	<u>C 'VI</u>		n	~_	_	Samp	ler Dimensions ZIN Split spow	Date Complet	ed 2/6/9/
Depth (ft/m) Sample Depth (ft/m)	Sample No. Sampler Type	Blows per 6 in/15 cm	Length Driven (in/cm)	ength Recovered (in/cm)	Casing Depth (ft/m)	Unified Soil Classification	SOIL DESCRIPTION Surface Conditions:		NOTES AND FIELD TESTS
Sam	Sam	B .9	Leng	engt (Cas	Σã	Salvace Conditions.		
	-						oak trees adjacent to having.	444	4
0	_	3					Little to no topsail	21200 + -	The way _
6'	B!							-	_
	65	5	19"	_]		SM	dry yellow silty, fine	L >AND -	_
1 5	1 "		15	75			<i>J.</i>		
-1 -1 -		7							_
├──┼ ┈									_
								_	_]
2	1 1	· · · · · ·						-	
			- ~- }					_	
	الم	12						-	·- 4
3	B/ 15	6	.11	1		SM	moist yellow silty, to	no Carl	
3 9	255	61	8	18		71	روراد مرابع		
							-		
		5			.			7	7
4	-		-]	
-'					4				_]
				+		·		_	
								4	- 4
5	1		- +						- 4
		3				- 1			• 4
	0 6		g'	.0			an alone 5% 5:11 m	9 64.	
6 6	355	3 /		18		SM	gray clayey 5% sifty 1	16 370	
<u>- </u>		6	.			7'	Sand is MORE CONSTITUTE	e Amed.	
		-	-			_	•		1
								1	.]
7									.]
	\dashv							4-	. 4
•						\dashv		+	
8		7					gray silty sand (fine to	source) +	. 4
S K	1 55 ,	,,				5M	gray SIFTY same (1.	5An 5/-	. 4
, P'	(-	7 16	3"	71	[7'			
	_	4.1.		_				7	+
9 1	-		4.					1	
'	+								1
•		-						4]
		1			- 1	L			

D. Jose Morellon	P	oject Name	Boring No. <u>48</u> /		
Project Number		WATER LEVEL	Location		
Client		TIME	Coordinates: N		
Contractor		DATE	E		
Drilling Method		ala Harman Wainbe	Ground Elevation		
Hole Size	San	ple Hammer: Weight Drop	Total Depth		
Driller		pler Dimensions	Date Started		
Logged by CMD	10 I	T T	· · · · · · · · · · · · · · · · · · ·		
Sample Depth (ft/m) Sample Depth (ft/m) Sample No. Sampler Type Blows per 6 in/15 cm (in/cm)	Length Recovere (in/cm) Casing Depth (ft/m) Unified Soil	SOIL DESCRIPTION	NOTES AND FIELD TESTS		
Sample De (fr/m) Sample De (fr/m) Sample T Sample T Blows p 6 in/15 c	Casin (fr (fr	Surface Conditions:			
10 -	 				
1 - 6 - 7	↓ ─┼─┼	deka ad diada			
45 55 6 18	14	dark gray saturated day	eg 3400 -		
11 55 55 6 1	50	1	<u> </u>		
5			·		
	 	-	+		
12	1		1		
10					
	l 	-	_		
1-1-1-1-1-1-1	 - -		_		
13 5655 18"	14	gray saturated claye	y SAND I		
5	1''				
14 5					
19-1-17		soft brown silty fine san	-		
[·	+ -		
			-]-		
15		- 66 65 11	_ _		
10		Jay fine Silty SAN	> + -		
4-755 6 18"	16	Slay fine silty sand	´ + -		
		, , ,	T = 3		
16 2			1		
- - -		_	-		
1.2		-	_		
17		1	<u> </u>		
			<u> </u>		
		a (a x -:// C · + - c ·	"C () -		
18 255 218	15"	gray silty fine to con	manus or a second		
78 5955 7 18	12 -	= thin stack, clayer, silty, fine sand	layer		
6					
19		gray sitty fine to co	adse -		
' ' -		رح ا	4NV		
1 +	1 1 1		+ -		
120			·		

Proje	ct Nu	umbe	r					Pr	oject Name	Boring No. 92	B1		
Clien								Г	WATER LEVEL	Location			
	ractor	r							TIME	Coordinates: N			
	ing M		1						DATE	E			
	Size .							C	-1-11	Ground Elevation	on		
Drille								Samı	ple Hammer: Weight	Total Depth			
								•	Drop	- Date Started			
_	ed by	_	_			10			oler Dimensions	Date Completed			
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	Blows per	Length Driven	Length Recovered	Casing Depth	Unified Soil Classification	SOIL DESCRIPTION Surface Conditions:		NOTES AND FIELD TESTS		
20													
20 21		5	55	14 6	18'	12"		SM	gray silly, fine to con	pebbes			
			ļ		ļ	ļ	ļ	 		1	-		
22											_		
			-	 	 	 				4-	_		
	М			-	1					- .	_		
23		_1		7	l .				ala a l	t	-		
2)		4)	55		18	12"		س	year gray fine to	CONST	-		
- 4 -		-		16.	ļ				SAND	1	_		
- 7				6	ļ				clean gray fine to 1 SAND — EOB 24ft.	4-	_		
24			- ا	· ·				-	E015 2947 -	 - -	_		
				†	† ·				,	+	-		
_				1						• +	_		
					L					7	_		
				ļ	ļ					I	_		
	-			├						1			
			-	 	ļ						_		
\neg										+	_		
										+	_		
				ļ.,,						7-			
-				 						<u> </u>	7		
-					-						J		
										4			
							· }			4.	-		
											-		
											-		
											-		
		-	.		4					1	-		
										4	J		
			+	•	~	-				4-			
	1		.					- }		· +	4		

HANZA EN	3114551	NIIVO	COIV	r Aiv i			*	Sheet of _
						S	OIL BORING LOG	3
Project Numl	Z	.25	71	,		Pro	eject Name HAMILTON LAKE	6P-7
Client HAZ	oer	20/6	di	1	tes			Boring No. 98-2 S. Location SITE G. CENTER
Contractor 2	74/20	DND	- I	014	1416	~ <u>`</u>		Coordinates: N
Contractor 🕰 Drilling Meth					m,	\vdash	DATE	E E
	od 4	<u>- </u>	po.			_		Ground Elevation 899
Hole Size <u> </u>	PA		کمری	- </td <td></td> <td>Samp</td> <td>le Hammer: Weight</td> <td>Total Denth 15:5</td>		Samp	le Hammer: Weight	Total Denth 15:5
Driller 2.870	474	- 10 <u>100 1</u>	Pa	<u> </u>	1		Drop	Date Started <u>8/6/9/ 3 - 4 3 p</u>
Logged by $ ot\!$	AKC 1	4	N/Z	DWA		Samp	ler Dimensions [Date Completed 8/6/9/
Sample Depth (ft/m) (ft/m)	. <u>e</u>		le l	ere	Ę	= 5	SOU DESCRIPTION	NOTES
Depth (ft/m Sample Depti (ft/m)	Sampler Type	Blows per 6 in/15 cm	ايَّ مَا	S E	Casing Depth (ft/m)	Unified Soil Classification	SOIL DESCRIPTION	AND FIELD TESTS
pth pth tft/	- 월	o i	# j	E .	Ē,È	ifie ssifi	Surface Conditions:	7,7220,72010
San	8 8	9	le le	angl	ဗ္ဗ	៦ន		
	+	+	-	_ت_		┝	4ft grass AND VEGETATION	
0+1			_					
6"		1		0'	\vec{j}		Black Diganic matter	+
1 14/2	72	1		0	471		black organic matter Root board,	+
11 45	1 55		18	643	. 7			<u> </u>
1-1-				10	μ			· <u> </u>
				51% P				4-
_		1						4-
2	1 - 1	1						
. 1 1	1	11						- - -
		11						- -
3	3	1/	in .	11.			No sample recovered	<u> </u>
140	355	1814	18	0			· •	
52		┪┈┈┪						4
4	1	11						-
		1 - 1						+ .
]	<u> </u>						+ -
								<u> </u>
5		-						<u> </u>
- 1				D ^{††}			sample in tip was gree,	./ ∔
1 1	55	13		7.				
6	4	112	18	only	\dashv		black organic residue w/	some +
_ [[ط		1		1A-			med sand. sample was	s of f
		16		118			45 SOUR Cre	am. +
			-					
7		-						
			\dashv					<u>-</u>
	-	10		-+		\dashv		+ -
8		12"		11			water washed sample out	r L + -
_ K	195		8		1		water washed sample out	~ ~ -
			_	[.]	Split spoon. Sample in +	· -
		6				\perp	was de ging sitty, clayer sand with roots And or	1, tiùI
9	+	6					SAND 1	/ ↓↓ ==================================
					.		mater 100TS AND OF	ganina -
- -	1 -						in with	-

Droje	ct Nu	·mhei						Pro	oject Name	Boring No. 4	B-2
Clien		THE						T v	WATER LEVEL	l ocation SZE	G CENTER
							_		TIME	Coordinates: N	
Conti	ractor		Sa	1,1.	COAD	115	-	√L	DATE	E	
Drilli	ng Me	ethod		n	1	1611	Amf	<i>7</i> . ∟		Ground Elevat	ion
Hole	Size .	7 2				400	los	Samp	ple Hammer: Weight	Total Depth	. /
	r 7			_			FUC	ER	Drop	Date Started _	
Logg	ed by		M	<u>z</u> _					oler Dimensions	Date Complete	d
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	Blows per 6 in/15 cm	Length Driven (in/cm)	Length Recovered (in/cm)	Casing Depth (ft/m)	Unified Soil Classification	SOIL DESCRIPTION Surface Conditions:		NOTES AND FIELD TESTS
10-				1						-	
 		l	 	12				\vdash		†	_
		1		12	1/2	2/			black organics	1	-
11		45		1	178	8"					
<u>''</u>	1	1		3/1		!		l'	grey silty 5% poorly gr very five - five sand.	aded	
		l	ļ	6.	ļ	ļ!	ļJ	 	very fine-fine sand.	4	
	ļI	 	 			ļ	ļJ	ł	///	4	
12	łł		ļ	-				 		+	
		 	 				 			+	_
	\vdash						1-1			. +	
1-3				3					gray silly, Very fine - +	ine SAND	
ワ		56		3					イングラーフ	, I	-
	1	יל	ļ		18	16	<u> </u>			- -	
		ļ	ļ	0	!					+	- -
14	1	ł								+	
!	-	1		3					as son fire to me	-1-401)+	- -
	1	57	ļ.—-'	1	18	14			gray my 1/Ne / The	+ (2000 +	
		j		6	10				_		-
15		1	1	10						+	· -
									gray very fine to me _ EOB 15.5ft _		-
	1	<u></u> '	<u> </u>	<u> </u>	Ш		 			4	
		ļ ¹	ļ!	ļ!		\square	\sqcup			4	
	1-		 '	 			j -			+	
	1	1						\vdash			-
	1			1	1					+	-
					1					+ +	
			7							+	
										エ	-
		!	ļ		ı						
	ı	, <i> </i>			ı 			ı I		4	
					i j			ı		4	
	4			ļ ļ		,		ı — I		4-	
				 							
)	1	1						+	-
	. 1		"	" "						+	-
	. †		ir f	1 1	1						·

			~	257	· /=			Pro	oject Name 🖽	AMILT	נוסו	LAKE		000
Project Number 52579								_					Boring No.	jB-J
Client HAMILTON LAKE								<u>^</u>	WATER LEVEL	6_	14	\sqcup		- ARUTCHENT
Contractor RAIMONDE Drilling Method SPLIT SFOON								<u> </u>	TIME	3PM	+		Coordinates: N	
Drilli	ng Me	ethod	<u> </u>	2/1/	<u></u>	<i>:::</i>	<u> </u>	L	DATE		7/30	لـــــا		tion 94 F F
Hole	Size _	4	至14	2				Samp	ple Hammer: Wo	eight	4015		Total Denth	24
Drille	er <u> 77</u>	<u> 272</u>	* _	<u>+ x</u>	7,1	<u>. </u>			Dr	ron	301N		Date Started	4/230, 1971 23pm
Logge	ed by.	<u></u>	-21	× 74.	<u>//:</u>	_		Samp	pler Dimensions	5 <u>Z /W</u>	Split	\$ 200 N	Date Complete	
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	lows per in/15 cm	gth Driven (in/cm)	h Recovered (in/cm)	Casing Depth (ft/m)	Unified Soil Classification	Surface Cond		L DESCR	IPTION		NOTES AND FIELD TESTS
Der	Sam	Sa	Sarr	9 B	Len	engt	Cas	5 క్రి	,	100				
 	H	+	\vdash	-	\vdash	ب	 	\vdash	Dense VE	- CO TATION	er Rasch	erry AND	CIHER 3-4	F.I TEN
-0-		_	<u> </u>	1					mass	V	7,	1.5	'''''	£7 / F. W
支									1/2 20		<i>-</i> ر.ح		1	
	1_4		55	1	18	0			No AL	COUCY-	2,	black s	-11 1	
-4	1-1	4	ļ		!		 !			Very.	Sott e	blace -	^{59;} /	
14	1-1	\$	-	-6	!	J			1				+	
12							 	\vdash	1				+	
2			1		1								1	
~													I	-
			[1!	1						I	-
	1	J!	ļ!	11	1	ļ <i>1</i>	ļJ	[]		L1	//		4	-
3	1	1 V		I	-m	\vdash_{H}		{ <i>-</i> }	lery.	SOFT	blac	h soil	+	
	1	1-5-	55	1-1	18	2"		11				-	+	
	1 1	\$.		1-,-		11	1		1				+	-
4		Ç.		1			1 7		Well Rous	41 F. F. 74 .		- au F		
]	ſ]				1 _1				1	TIPLE T	INE SAN	ND, SILT SOME CIC	<u> </u>	
	i	1		1. 1	1. 1	i 🔟	لـــا	1	\ \tag{\tau}	,,,,	11/2	SEARL -	<u> </u>	
	ı 	į Į	1 .1		1	ı	ı —-!	1 +	1				+	- -
5		1		1	11	ı—+	i		1					- -
	1	m			-	\rightarrow	-	-	1				+	- -
7		5	1	1		,,,,				041			+	
6		N'	55		18	14			ORGAN	r mat	Her	20.	RINK	
٦		83							SOF	=+ SP0	INSEY	RED BILD	owa + BLACK	WATER
			ļl	$\dot{\longrightarrow}$				1	ı				7	-
	r -	r	1	-					i				4	
3	-	-		-	\rightarrow				1	~ h	~ 1m.1A	-D GEF	EN CAND +	
<u> </u>		-		-+	-	-			(AUGER LI.	FIEY I	PATURAL	re- v.	/""/)十	- · -
						\neg							-	
8	1	7		0	4.	_1			DK Gra	in clai	16400	CAPE SO	:/ +	·
		3	55	0	' 1	13"			- ' -	ノハノ	<i>/ / -</i> -	-	" I	
		E.	7-					, <u> </u>	50+1	black i	Gran C	consider	·]	·
		6		2							-			_
٠.	-4								5617-3	firs to c	ourse &	914y 5AN;	> +	
			-	-	-							1000	+	
			1										+	· -
- 1	. 1	. 1	. 1	. 1										-4

Proje	ct Ni	ımher	. 5	25	7 6	?		Pro	oject NameBoring No	98-3		
Project Number 5257 G								V				
	ractor	<u> </u>							TIME Coordinates:	N		
		ethod							DATE	E		
	Size _							Samr	Ne Hammer: Waight	Ground Elevation		
Drille									Drop Date Started			
	ed by							Samr	oler Dimensions — Date Started			
	,	_	Τ.,	T	Ī-	18			I	NOTES		
Depth (ft/m)	Depti /m)	Sample No.	Sampler Type	s per 15 cm	Driver (cm)	ecover (cm)	Depth /m)	Unified Soil Classification	SOIL DESCRIPTION	AND FIELD TESTS		
Depth	Sample Depth (ft/m)	Samp	Sample	Blow 6 in/	Length (in/	Length Recovered (in/cm)	Casing (ft	Unifie Classif	Surface Conditions:			
10					Ī							
70	Ш		\Box	23		ļ	Γ		gray day with organics	<u> </u>		
		1-2		ļ	ļ		ļ	 '		_		
	-	-4	35	+++-	18	13,7			fine to coarse sangy clay - yellow cool	-		
		60	-	†	'.	יי ען			gravely yellow sand in -			
		10		8	1				SAIL	-		
		[!		1					gravely yellow sand in -			
1 2								!	Stuffer Isp _	_		
-		ļ!	ļ							_		
				<u> </u>		ļ!	·!		_	.		
	1			5-					sori clay some organies	-		
13		6	10	ار. ا	† ·	101	 		Stray come 5 -	-		
		57	55	15	18	18				-		
	1_1	!		13	[!		l!		yollow grouply wed-coarse	<u> </u>		
14	لــا	4!				ļ!	ļ!		SAN			
/	ļ	ļJ		ļ ¹	!		ļJ	ļļ				
·		11			!							
		j +	† '	1						- 4		
15		1 -	'	1	• • •	,	1 1	-	-	<u> </u>		
		,y		12		18	1-1		, ,			
_		15577	SS	18	18	100			11 Area - 45 11 grant ; sand	├ ~ , -		
16				101					has clear mater	-2 samples -		
		ار. آ		5					11 grew-years growing sand - yellowledge clay			
	ل	9:74	igsqcut	1-1					yellowlagense claus	_ _		
		rl				1			-	<u> </u>		
17			ı——							<u> </u>		
	†				1-1	-			,	-		
				12		1			fine - med gravel subangular to well-	-		
18	. 1	,1	55	18	18	1/-		1	Pount 2	· -		
,,,		448		1 1	10	ا د ا			grovelly sands clay	_		
		ا '``]	11		16			, · · · · · · · · · · · · · · · · · · ·	_		
		,l		8.		ļ			ordigo med-course well rounded sorry	_		
19	-4								4	_		
		.	.		1	,				<u> </u>		
'	1	.			j:			-	`-			
, ,	İ			. 1	, 1			-	-			

SOIL BORING LOG

Proje	ct Nu	ımber						Pro	ject Name ####################################	<i>£B</i> -3				
Clien								[v	ATER LEVEL Location	/				
Contractor TIME Coordinates: N									N					
		ethod							DATE	E				
	Size.								Ground Elev	Ground Elevation				
Delle	3126.	2116	R	بدر ه	DN.	0/		Samp	le Hammer: Weight Total Depth					
L		1	M	BR	กนา	1/		_	Drop Date Started					
$\overline{}$			7 1 2						ler Dimensions Date Comple	ted				
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	ows per 1/15 cm	th Driven in/cm)	n Recovered in/cm)	Casing Depth (ft/m)	fied Soil sification	SOIL DESCRIPTION Surface Conditions:	NOTES AND FIELD TESTS				
Dep	Sam	Sa	Sam	9 B	Leng	Length (Çasi	G G G	auriace Conditions:					
20	<u> </u>		-	<u> </u>				ļ	_	_				
	-		├	12		ļ			med-coarse rounded SAND-	 -				
		(5°)		14				-	-	├ ,-				
21		7/2		111	i		l		-	· ·				
27				14						-				
	L_			1'1			<u> </u>		coarse sill to fire sand					
ļ									very well 100x 05-2	_				
22						4 + cmon.			_	- , -				
				 :		~			_					
				. ,					COFREE SPACE	-				
23				111					- 1511 A.S. 1977					
		κ_{i_j}		9	_6				SEND WI SOME SIE LANCIAY -					
		5]]					- SIC LAS CIAN					
				1111					- Go five - MED SELLS -	<u> </u>				
94				-			7		EOB 24-F					
				1 - 1						- / -				
]					_				
25				l										
				ļ ļ					AT Completion					
				 			-1		OF DRILING WATER	_				
				 		\dashv			AT CompleTion of DRILLING MATTER	_				
								\neg	The state of the state of					
\Box									·					
										_ _				
									_					
									′ 4					
				\vdash		\dashv								
					- +				·	- , -				
]		***************************************					-	- ′ -				
										_ 1				
								_	,]	_]				
									-	_ • <u>]</u>				
									, -	- 4				
									, –	. <u>.</u>				
1	1	- 1		İ					· -{					

APPENDIX B - TEST PIT LOGS

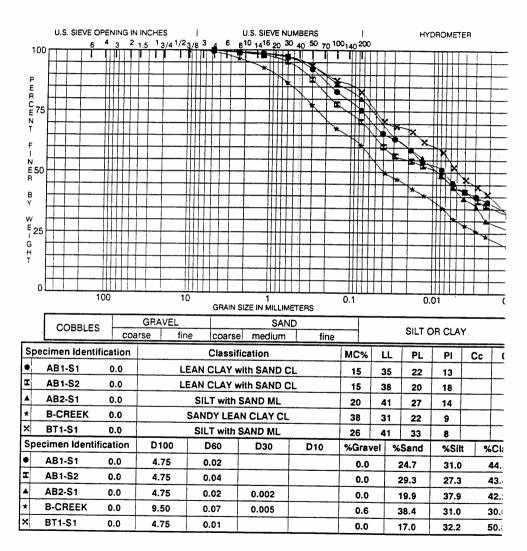
TEST TRENCH SOIL BORING-LOG

		mber.	5	., <	76	7		Pro	ject Name HAMILTON LAKE Boring No	AT. Q				
Proje	ct Nu	mber.	<u> </u>	LA.	<u> </u>	A55:	~	_	ATER LEVEL Location S	Location 5/71 / HAVE 1017				
Contr	actor.	BU	TLE	X #	Bu	72.2/	٤.		TIME Coordinates:	Coordinates: N WEST & RIGHT				
Deili:	actor	thod.	BAL	CK 1	400				DATE	E				
Uriiii Uala	C:	Z :	XI	051	× 14	14	74.2	<i>2</i>	Ground Eleva Hammer: Weight Total Depth	Ground Elevation 953.3 Total Depth 1474				
noie Drille	, 7	308	RI	CHI	NAI	1	T	Jamp	Drop Date Started	1VLY 31				
	d by		MZ	RRI	2WA	<u> </u>		Samp	ler Dimensions Date Complet	ed JULY 3'				
	т —	_				0			SOIL DESCRIPTION	NOTES AND FIELD TESTS				
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	Blows per 6 in/15 cm	Length (in/c	Length Recov (in/cm)	Casing Depth (ft/m)	Unified Soil Classification	Surface Conditions:					
	ļ		<u> </u>			-			NO VEGETATION AT TEST PIT SITT SA	H Mar reach				
0	-								DENSE BLACK BLAYEY TOPSEIL					
7-		Ý	85							x sauge _				
		6,	-											
2		 -				7				_				
>									, , , ,					
3									ging clay ned density -					
Ш.	ļ		ļ	ļ						- -				
	;						 		· · · · · · · ·					
#5		fui.					 		·					
		45	B 5	l						- KSANYE -				
7 -	ļ	47	100	ļ			ļ	CL	- / - /					
1							ļ.—	<i></i>	Med gray clay					
-	!						†		_	-				
. Ç	-]				
9									_]				
							ļ		_					
12			ļ.—				 	ļ	-	_				
		 		 		<u>-</u>	ł		D/c. C. J					
<u> </u>	1	1					1	SC	gray sonly day					
12			L	<u> </u>			ļ							
	<u> </u>	- M	1	ļ	ļ		∤ -	- 6	ging well graded Elega fine to med-	- v Sample -				
7 5	 	7	B5	 			├	SP	Lift reunder sant	- <i>X ***</i> 7 · -				
ن. ا		15	ļ	 	 	 	-	_	·					
7														
_	L	ļ	ļ											
				ļ		 			_					
		 	-			 	·		-					
	1	-			1-			l						
]				1		1	·					
	ļ				ļ				-					
									-	- 4				
1		Į					ļ		·					

SOIL BORING LOG

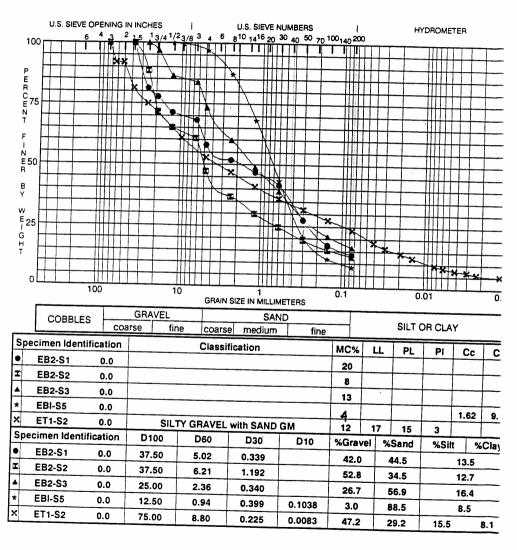
			_					•	//2 //2.75	2 × 1						
Proje	ct Nu	mber	_5	257	26				ject Name HANKTON LAKE Boring No.	57-/						
Clien	HA	mic	TON	ر کم	14C	4	550C	. [~	ATER LEVEL 6 Location 27	SIDE OF CREEK						
Conti	actor	Bu	TLE	P #	807	ZEX	?		TIME // Coordinates:							
Deilli	na Ma	*bod	B	ACA	CH	E			DATE 7/3/ E							
		tnoa	_	16.2			_		Ground Elevation 9651							
Hole	-	801	1	ICH	10.4	4.1		Samp	Total Depth	13++						
Drille	r	7	100	2	4141	 			Drop Date Started .							
Logge	d by		147	ço	~~			Samp	ler Dimensions — Date Complet	ed fine 43/						
Depth (ft/m)	Sample Depth (ft/m)	Sample No.	Sampler Type	s per 5 cm	Driven /cm)	ecovered cm)	Depth 'm)	Unified Soil Classification	SOIL DESCRIPTION	NOTES AND FIELD TESTS						
Depth	Sample (ft,	Ѕатр	Sample	Blows p 6 in/15	Length (in/c	Length Recovere (in/cm)	Casing (ft.	Unifie Classif	Surface Conditions:	,						
0									depression, sparse regetation -	_						
									dk gray topsoil							
1			·							_						
ļ.,								-								
2-	X			ļ.,					Mottled Realfolk gray clay	- 5 mm/m						
	ست								VERY hard	- Simpler -						
3-			ļ	 	·				· / /							
14		MALLON TO A	İ	† †						sitty can -						
4-	X	50							that Finder class	- () -						
5-									thed Reefging clay -	- ENTITE ALPSY-						
7																
6								_	RED Brown clay							
				ļ												
7.									- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>						
									1							
8					1											
9					1				water sceped into he's at a	-						
, ,									and bill does	_						
10									9 .	-						
ļ′				ļ												
#																
	اوسا								gray chay							
12	X	47		∤∤					1 / / H							
	门								- 	-						
151	[]]	>							-EOTEST PIT -							
14									-							
77									7							
15										_						
·																
				4					_							
						~ -			-	_						
									-	_						
1	-			-					+							
									-	-						
	İ				1				1							
	1	- 1	- 1		- 1	1			• -							

SOIL BORING LOG


Project Name HAMILTON LAKE Project Number_5257/ Client HAMILTON LAZE PSIX Location - TITE B - CENTEAN WATER LEVEL Coordinates: N along Fine Contractor BUTLER + BUTLER TIME Drilling Method BACKHOE DATE Ground Elevation . Hole Size Sample Hammer: Weight Total Depth _ Drop Logged by LM B Sampler Dimensions Date Completed _ ength Driven (in/cm) Unified Soil Classification Sample No. SOIL DESCRIPTION AND FIELD TESTS Surface Conditions: Trees + will grafes along tence Wack topsoil layer or knee of gravely (10%) 51/2 ESAND LENGE PONLY gradue stary dk gray hard gilty clay dk gray changely sith 10 EUTEST Pot 13 FZ

APPENDIX C - GRAIN SIZE CURVES

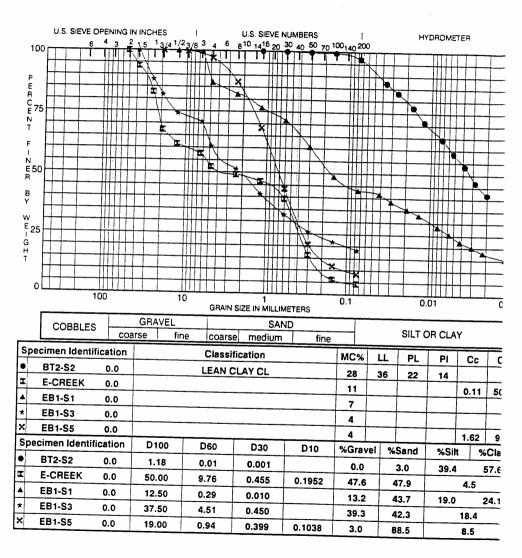
Date 9.9.91


Project HAMILTON LAKE ENHANCEMENT -

GRADATION CURVES

Date 9.9.91

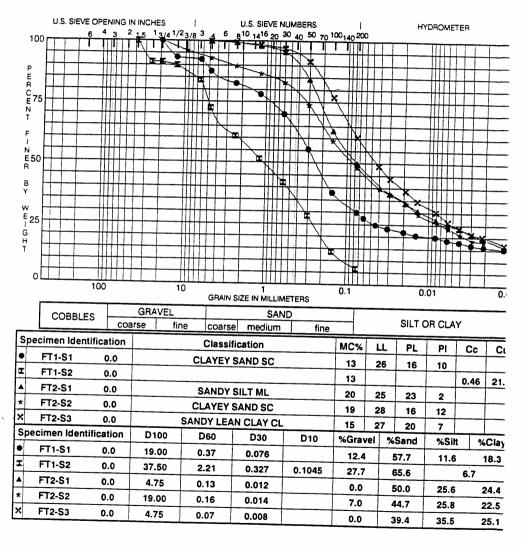
Project HAMILTON LAKE ENHANCEMENT -


GRADATION CURVES

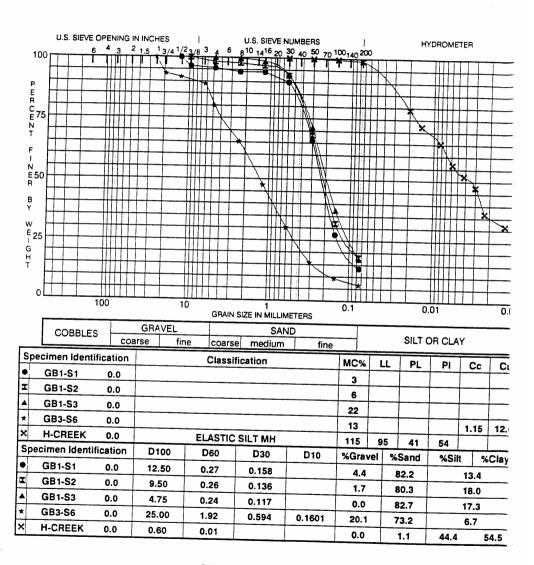
HARZA

Job No.

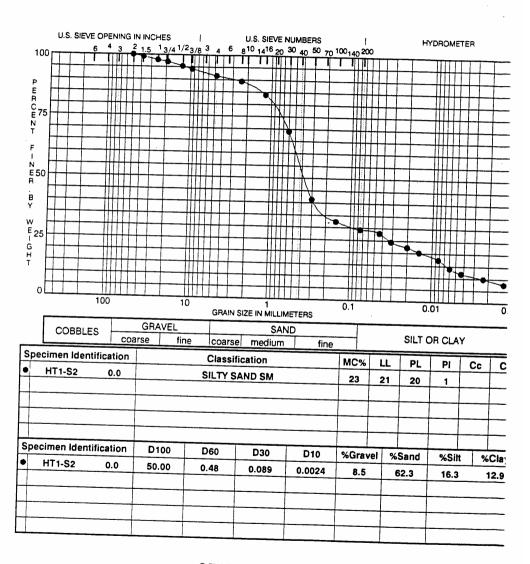
Date 9.9.91


Project HAMILTON LAKE ENHANCEMENT -

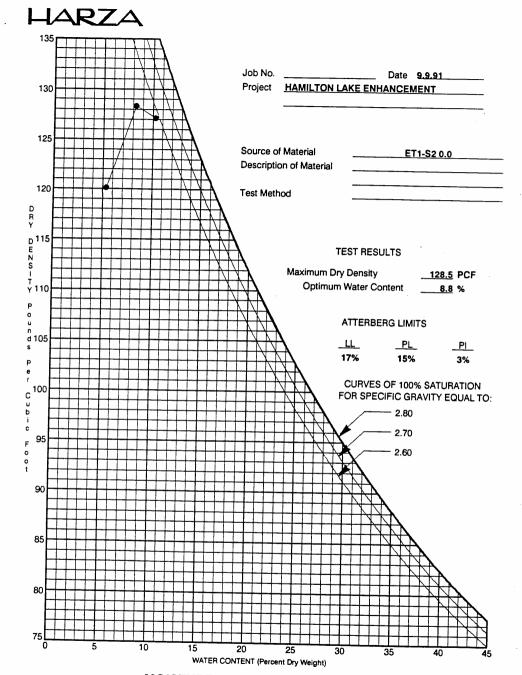
GRADATION CURVES


Date 9.9.91

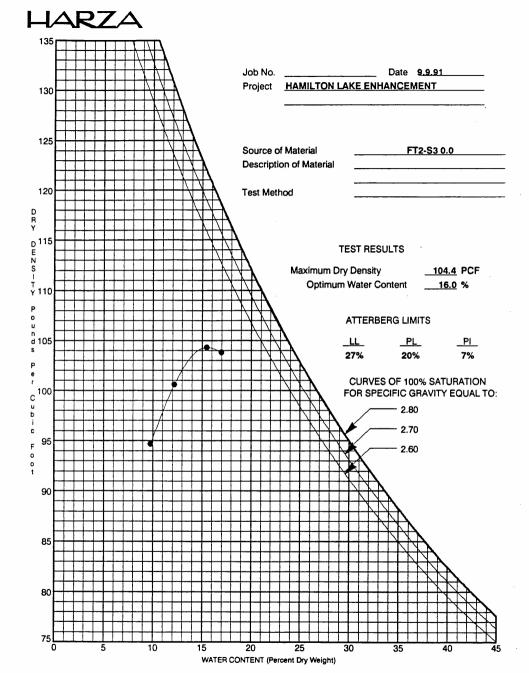
Project HAMILTON LAKE ENHANCEMENT -


Date 9.9.91

Project HAMILTON LAKE ENHANCEMENT -



Date 9.9.91


Project HAMILTON LAKE ENHANCEMENT -

APPENDIX D - LABORATORY TEST DATA

MOISTURE-DENSITY RELATIONSHIP

MOISTURE-DENSITY RELATIONSHIP

Job No. Date 9.9.91 HAMILTON LAKE ENHANCEMENT Project 130 125 Source of Material HT1-S2 0.0 -Description of Material 120 Test Method D R Y _D 115 EZS-**TEST RESULTS** Maximum Dry Density __120.6 PCF Ť Y 110 Optimum Water Content <u>12.5</u> % 0 ATTERBERG LIMITS ä 105 PL PL 21% 20% 1% **CURVES OF 100% SATURATION** c 100 FOR SPECIFIC GRAVITY EQUAL TO: 2.80 b С 2.70 95 2.60 0 0 90 85 80 10 15

WATER CONTENT (Percent Dry Weight) MOISTURE-DENSITY RELATIONSHIP

APPENDIX E

DEC 08 1998

CERTIFICATE OF APPROVAL CONSTRUCTION IN A FLOODWAY

APPLICATION #: FW-18,256

<u>STREAM</u>

: Haughey Ditch

APPLICANT

: Hamilton Lake Association

Jerry Smith P.O. Box 515

Hamilton IN 46742

AGENT

: Harza Engineering Company

David W. Miller 425 Roland Way Oakland CA 94621

AUTHORITY

: IC 14-28-1 with 310 IAC 6-1

DESCRIPTION

A steel sheet pile in-channel weir will be built across Haughey Ditch to create a 7.5-acre detention area that will enhance an adjacent wetland and will also capture sediment flowing into Hamilton Lake. The weir will have a maximum length of 47', a top width of 5', a crest elevation of 956.25', NGVD, and a 6' wide "V"-notch with a minimum elevation of 953.0', NGVD. All excavated material will be placed in upland disposal areas outside of the delineated wetland. Riprap placed over filter fabric will be keyed into the bank a minimum of 2' and will extend from the intersection of the weir and the natural bank slopes to 5' landward from the edges of the sheet piling. Riprap over filter fabric will also be placed in the channel immediately downstream of the constructed spillway. Details of the project are contained in plans and information received at the Division of Water on March 25, 1997, May 19, 1997, September 23, 1997, October 1, 1997, February 6, 1998 and August 11, 1998.

LOCATION

: Across the stream, approximately 600' upstream (west) of the C.R. 600 East stream crossing near Hamilton, Otsego Township, Steuben County

 W_2^1 , NE $_3$, NE $_4$, Section 23, T 36N, R 14E, Hamilton Quadrangle UTM Coordinates: Downstream = 4604050 North, 676975 East

APPROVED BY:

Michael W. Neyer, PE

Director

Division of Water

APPROVED ON: December 4, 1998

Attachments: Notice Of Right To Administrative Review

General Conditions Special Conditions Service List

NOTICE OF RIGHT TO ADMINISTRATIVE REVIEW

APPLICATION #: FW-18,256

This signed document constitutes the issuance of a permit by the Natural Resources Commission, or its designee, subject to the conditions and limitations stated on the pages entitled "General Conditions" and "Special Conditions".

The permit or any of the conditions or limitations which it contains may be appealed by applying for administrative review. Such review is governed by the Administrative Orders and Procedures Act, IC 4-21.5, and the Department's rules pertaining to adjudicative proceedings, 312 IAC 3-1.

In order to obtain a review, a written petition must be filed with the Division of Hearings within 18 days of the mailing date of this notice. The petition should be addressed to:

Mr. Stephen L. Lucas, Director Division of Hearings Room W272
402 West Washington Street Indianapolis, Indiana 46204

The petition must contain specific reasons for the appeal and indicate the portion or portions of the permit to which the appeal pertains.

If an appeal is filed, the final agency determination will be made by the Natural Resources Commission following a legal proceeding conducted before an Administrative Law Judge. The Department of Natural Resources will be represented by legal counsel.

GENERAL CONDITIONS

APPLICATION #: FW-18,256

(1) If any archaeological artifacts or human remains are uncovered during construction, federal law and regulations (16 USC 470, et seq.; 36 CFR 800.11, et al) and State law (IC 14-21-1) require that work must stop and that the discovery must be reported to the Division of Historic Preservation and Archaeology within 2 business days.

> Division of Historic Preservation and Archaeology Room W274 402 West Washington Street Indianapolis, Indiana 46204

Telephone: (317) 232-1646, FAX: (317) 232-8036

- (2) This permit must be posted and maintained at the project site until the project is completed.
- (3) This permit does not relieve the permittee of the responsibility for obtaining additional permits, approvals, easements, etc. as required by other federal, state, or local regulatory agencies. These agencies include, but are not limited to:

Agency	Telephone Number						
Detroit District, U.S. Army Corps of Engineers	(313) 226-2218						
Indiana Department of Environmental Management	(317) 233-2471						
Maumee River Basin Commission	(219) 449-7226						
Steuben County Drainage Board	(219) 665-5117						
Local city or county planning or zoning commission	Check local directory						

- (4) This permit must not be construed as a waiver of any local ordinance or other state or federal law.
- (5) This permit does not relieve the permittee of any liability for the effects which the project may have upon the safety of the life or property of others.
- (6) This permit may be revoked by the Department of Natural Resources for violation of any condition, limitation, or applicable statute or rule.
- (7) This permit shall not be assignable or transferable without the prior written approval of the Department of Natural Resources. To initiate a transfer contact:

Mr. Michael W. Neyer, PE, Director Division of Water Room W264 402 West Washington Street Indianapolis, Indiana 46204

Telephone: (317) 232-4160, FAX: (317) 233-4579

- (8) The Department of Natural Resources shall have the right to enter upon the site of the permitted activity for the purpose of inspecting the authorized work.
- (9) The receipt and acceptance of this permit by the applicant or authorized agent shall be considered as acceptance of the conditions and limitations stated on the pages entitled "General Conditions" and "Special Conditions".

STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES SPECIAL CONDITIONS

APPLICATION #: FW-18,256

PERMIT VALIDITY: This permit is valid for 24 months from the "Approved On" date shown on the first page. If work has not been initiated by December 4, 2000 the permit will become void and a new permit will be required in order to continue work on the project.

> This permit becomes effective 18 days after the "MAILED" date shown on the first page. If both a petition for review and a petition for a stay of effectiveness are filed before this permit becomes effective, any part of the permit that is within the scope of the petition for stay is stayed for an additional 15 days.

CONFORMANCE : Other than those measures necessary to satisfy the "General Conditions" and "Special Conditions", the project must conform to the information received by the Department of Natural Resources on: March 25, 1997, May 19, 1997, September 23, 1997, October 1, 1997, February 6, 1998 and August 11, 1998. Any deviation from the information must receive the prior written approval of the Department.

Number Special Condition

- (1) revegetate all bare and disturbed areas with a mixture of grasses (excluding all varieties of tall fescue) and legumes as soon as possible upon completion
- (2) appropriately designed measures for controlling erosion and sediment must be implemented to prevent sediment from entering the stream or leaving the construction site; maintain these measures until construction is complete and all disturbed areas are stabilized
- (3) do not clear or dredge in the ditch or upstream of the weir during construction
- (4) do not clear vegetation except for where the weir is constructed
- after construction, remove sediment deposited immediately upstream of the structure; limit the zone of sediment (5) removal to the area within 50' of the structure
- (6) do not clear vegetation from the wetland after construction except for any vegetation that may be cleared within 50' of the structure when the accumulated sediment is removed
- (7) except for the material used as backfill as shown on the above referenced project plans on file at the Division of Water, place all excavated material landward of the floodway
- (8) do not leave felled trees, brush, or other debris in the floodway
- (9) all riprap placed for bank stabilization must conform to the bank
- (10) upon completion of the project, remove all construction debris from the floodway

SERVICE LIST

APPLICATION #: FW-18,256

Hamilton Lake Association Jerry Smith P.O. Box 515 Hamilton IN 46742

Regulatory Functions Branch Detroit District, USACOE c/o Mr. Gary Mannesto P.O. Box 1027 Detroit MI 48231-1027

Steuben County Soil and Water Conservation District Peachtree Plaza 200 1220 North 200 West Angola IN 46703

Staff Assignment

Administrative: Markita L. Shepherdson Technical : Matthew D. Patton Environmental : Stephen H. Jose Harza Engineering Company David W. Miller 425 Roland Way Oakland CA 94621

Maumee River Basin Commission c/o Rodney Renkenberger Exec Dir. Room B-80 City County Building Fort Wayne IN 46802

Division of Law Enforcement, IDNR North Region Headquarters (Dist 2) c/o Capt. Bruce Clear RR 6, Box 344 Peru IN 46970 Kathleen Harris 6025 East 500 South Hamilton IN 96742

Steuben County Drainage Board Attn: County Surveyor 317 South Wayne, Suite 3-K Angola IN 46703

Steuben County Plan Commission 317 S. Wayne, Suite 3-L Angola In 46703

DEPARTMENT OF THE ARMY

DETROIT DISTRICT, CORPS OF ENGINEERS
REGULATORY BRANCH
SOUTH BEND FIELD OFFICE
2422 VIRIDIAN DRIVE SUITE # 101
SOUTH BEND, INDIANA 46628

November 30, 1999

IN REPLY REFER TO

File No. 96-176-054-0

Harza Engineering Company, Inc. Douglas Mulvey 233 S. Wacker Dr. Chicago, Illinois 60606-6392

Dear Mr. Mulvey:

Please refer to your October 14, 1999 letter requesting an extension of time to create and enhance wetlands in Haughey Ditch located northeast of Hamilton Lake in Steuben County, Indiana (Section 23, Township 36N., Range 14E.). By letter dated May 6, 1997, we verified that work proposed by the Hamilton Lake Association is authorized by our regulations for nationwide permits. As you may recall, a Nationwide Permit is a blanket permit whereby a class of activities can receive Department of Army authorization with a minimal amount of administrative review.

The purpose of this letter is to inform you that we have verified that the revised proposal still complies with, and is therefore authorized under the Nationwide Permits as issued in the Federal Register December 13, 1996 (61 FR 65874). Based on our review of the revised plans (copy enclosed), the project has been reduced in size and will result in a 7.5 acre detention area. A steel sheet pile in-channel weir will replace the original earthen dam detention structure. Approximately 45 cubic yards of riprap will be discharged around the structure for erosion protection. All of the original conditions remain in full force and effect. The nationwides also require you to submit the enclosed COMPLETION REPORT to this office when the work is finished.

Any proposed further revision or modification to the project may not qualify for the authorization. If you contemplate any changes or additional activities from those depicted on the enclosed plans, please submit them to this office for authorization review prior to any construction. Failure to secure the necessary approvals may result in the initiation of legal action against the responsible parties.

a defining of the contract of

This verification is valid for 2 years from the date of this letter unless the blanket Nationwide Permit is modified, suspended, or revoked. If you have any questions, please contact me at the above address or telephone (219) 232-1952. Please refer to File Number: 96-176-054-0.

Sincerely,

Biclogist

South Bend Field Office

Enclosures

Copies Furnished

Hamilton Lake Association

NATIONWIDE PERMIT COMPLETION REPORT

Detroit District, Corps of Engineers

CELRE-CO-L 96-176-054-0

Commander U.S. Army Engineer District, Detroit ATTN: Regulatory Branch P.O. Box 1027

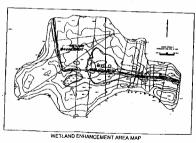
Detroit, Michigan 48231-1027

Dear Sir

This is in regard to Department of the Army File No. 96-176-054-0, issued to Hamilton Lake Association on November 30, 1999, to create and enhance wetlands in Haughey Ditch in Steuben County, Indiana. I hereby certify that the work authorized by the above referenced permit has been completed in accordance with the terms and conditions of the permit, and required mitigation was completed in accordance with the permit conditions.

The work was completed on:	(Date work completed)	
_	(Signature of Permittee)	(Date)

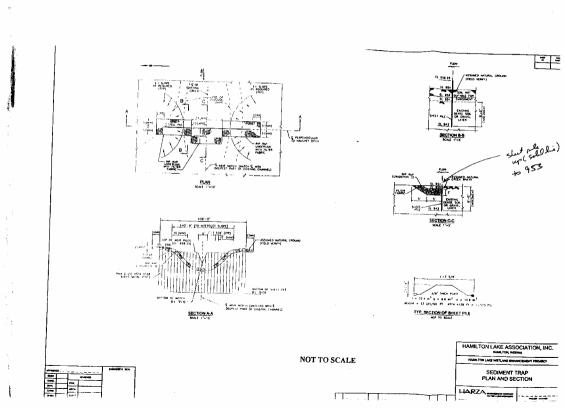
Upon completion of the activity authorized by this permit and any mitigation required by the permit, sign this certification and return it to the above address, within 10 days after completion of work.


Please note that your permitted activity is subject to compliance inspection by the U.S. Army Corps of Engineers' representatives. If you fail to comply with this permit you are subject to permit suspension, modification or revocation.

HAMILTON LAKE ASSOCIATION, INC. HAMILTON, INDIANA

HAMILTON LAKE WETLAND ENHANCEMENT PROJECT

August 1999


	DRAWING INDEX
SHEET No.	DRAWING TITLE
SHEET 1	COVER / GENERAL NOTES
SHEET 2	SECUMENT CONTROL STRUCTURE

HARZA ENGINEERING COMPANY

WATER & ENVIRONMENT

SEARS TURNER - 213 South Minter Drive - Chicago, Minute 80808-6392 - Set (312) 631-3800 - For (312) 631-3976

INDIANA DEPARTMENT OF NATURAL RESOURCES

PATRICK R. RALSTON, DIRECTOR

Division of Historic Preservation and Archaeology 402 W. Washington St., Rm. 274 Indianapolis, Indiana 46204 317-232-1646

March 24, 1992

David W. Miller, PE Project Manager Harza Engineering Company Sears Tower 233 South Wacker Drive Chicago, Illinois 60606-6392

Dear Mr. Miller:

We have reviewed the proposed construction of six artificial wetlands to improve the water quality of Hamilton Lake (DNR #4437) located in Steuben County, Indiana.

No known historical or architectural sites listed in or eligible for inclusion in the National Register of Historic Places will be affected by this project.

A review of our records and references has revealed that Project Locations A, G, and H are very poorly drained and are therefore unlikely to contain significant archaeological resources. However, Project Locations B, E, and F appear to be physiographically suitable to contain archaeological sites.

Given these factors, a reconnaissance level archaeological survey will be required for Project Locations B, E, and F prior to construction. The survey must be done in accordance with the Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation (48 FR 44716). A description of the survey methods and results must be submitted to the Division of Historic Preservation and Archaeology for review before we can comment further. Please refer to the enclosed list of qualified archaeologists.

In the event that sites which are eligible for the National Register are discovered, the applicant must follow the rules and regulations established by the Advisory Council on Historic Preservation (found at 36 CFR Part 800) to implement federal Public Laws 89-665, 94-422, and 96-515, and Executive Order 11593. Regulations for implementing these laws are found in 36 CFR 800.

Dave W. Miller March 24, 1992 Page 2

We appreciate the opportunity to be of service.

Very truly yours,

Patrick R. Ralston State Historic Preservation Officer

PRR: JAM: vk

Enclosure

APPENDIX F

HAMILTON LAKE SEDIMENT TRAP INSPECTION AND MAINTENANCE REPORT FORM

TO BE COMPLETED EVERY SUMMER

INS	PECTOR:

DATE:

PREVIOUS INSPECTION DATE:

CONCLUSIONS:

COMMENTS:

WETLAND VEGETATION

CONDITION OF VEGETATION

SEDIMENT BASIN SHORELINE	LOW HEAD WEIR CREST	OUTSIDE LOW HEAD WEIR									
OTHER OBSERVATIONS:											
MAINTENANCE REQUIRED I	FOR WETLAND VEGETATION	N:									
TO BE PERFORMED BY:	ON C	ON OR BEFORE:									
COMPLETED BY:	DAT	E:									

HAMILTON LAKE SEDIMENT TRAP INSPECTION AND MAINTENANCE REPORT FORM

TO BE COMPLETED EVERY SUMMER

INSPECTOR: PREVIOUS INSPECTION DAT CONCLUSIONS:		DATE:									
LOW HEAD WEIR											
CONDITION OF CREST	CONDITION OF SIDE SLOPES	EVIDENCE OF SLOUGHING?									
OTHER OBSERVATIONS:											
MAINTENANCE REQUIRED F	FOR LOW HEAD WEIR:										
TO BE PERFORMED BY:	ON C	OR BEFORE:									
COMPLETED BY:	DAT	E:									
COMMENTS:											

HAMILTON LAKE SEDIMENT TRAP INSPECTION AND MAINTENANCE REPORT FORM

TO BE COMPLETED EVERY SUMMER

INS	DE.	СТ	OD.	
111/1/2	PH		uk.	

DATE:

PREVIOUS INSPECTION DATE:

CONCLUSIONS:

SEDIMENT BASIN

	Si	CONDITION	CONDITION			
INS	PECTION POINTS	CONSISTENCY	DEPTH TO	ELEVATION	OF BASIN SLOPES	OF STORM WATER
NO.	LOCATION	OF SEDIMENT	FIRM SEDIMENT	OF FIRM SEDIMENT		INFLOW CULVERT

(∩	٦	Ŧ	4	E.	R	\cap	R	S	FI	P٦	JΑ	ľ	ГΤ	\boldsymbol{C}	۱	J	C	

MAII	NTENANCE	REQUIRED	FOR	SEDIME	MT BASIN	
TAYY FT?	. TELLINATIVE	TEOUNED	TUIN	OUTHING	INI DASIN	٩

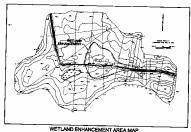
TO BE PERFORMED BY:

ON OR BEFORE:

COMPLETED BY:

DATE:

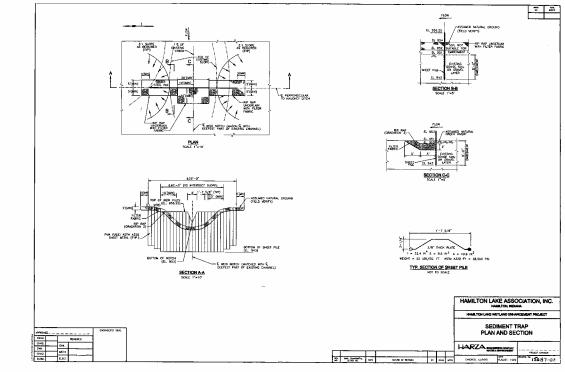
COMMENTS:


APPENDIX G

HAMILTON LAKE ASSOCIATION, INC. HAMILTON, INDIANA

HAMILTON LAKE WETLAND ENHANCEMENT PROJECT

August 1999



WETLAND ENHANCEMENT ARE

HARZA ENGINEERING COMPANY

WATER & ENVIRONM

SEARS TOWER - 233 South Wecker Orive - Chicogo, Illinois 60608-6392 - Tel: (312) 831-3800 - Fax: (312) 831-3976

HARZA

CHICAGO

<u> </u>	
SUBJECT HAMILTON LAKE QTOS	PROJECTNAME Hamilton Lake
COMPUTED DLM DATE 8/17/99	PROJECT NUMBER 15087
CHECKED DATE DATE	Page
	rage Ui rages
$R_{ip} R_{ap} = \{(20')(10')(2') + 2[(10')(18')(2')]\}$	$\left(\frac{yd^{3}}{27.44^{3}}\right) = 41.5 \text{ yd}^{3}$
Sheet P. 70 = (56')(13.25') = 742 ft2	
Filter Fabric = (20')(10') + Z(10')(18') = 5	560 ftz (2 dz) = (-2 < U
Excavation = Rip Rap = 41,5yd	(7++) = 62 3 +
Prices	
Sheet pile \$31 ft2 mitheled	
excavet or #21 yd3 soft mathing #21 yd3 rip-rap #30 ton for RR3	
ripi-rup \$30 ton for RR3	s a ztons/cy
100 ton for 1012 3	5 2 2 mg/cy
geotextile #6 sqyd	
<u>Cos75</u>	
Dewatering of Work Aren =	\$5,000
Sedent Saphy + Testing = 3 samples @ 1500/	1smple = \$4,500
Dewatoning of Work Areus = Sedint Sorphy + Teshy = 3 samples @ 1500/ Sheet rile = (742 ff²) (\$31/f4²)	¥23,000
Exemption = (421/yd3) (41.5 ye	
$R_{1}>R_{1}>R_{2}$ = $(*30/ton)(\frac{2}{5})(41)$	(57d³) = \$2500
Geotextle = $(8 \frac{6}{3})(62 \text{ yd}^2)$	ž \$200
Mobilization/ Perohilization	410,000
Clearing & Grubbing	\$3,000
Restoration	#3,000
Surveying	\$ 5,000
SibToma	\$57.500

JECT		PROJECT NAME	Hamilton Lake	
IPUTED	DATE DATE	PROJECT NUMBER	73087 Pages	
Construction Inspection	Administration +10%	5,	750	
Contingency	+ 25%	15	,800	
TOTAL		* 7 9	,000	